Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Renewable Energy Technologies – 2 (EPEC 8003) **Course:**

Programme: M.Tech. Energy Studies 03 hrs.

Time:

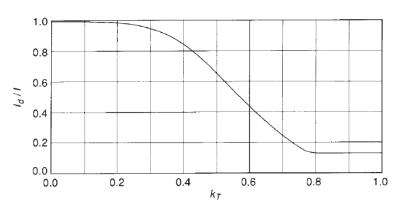
Max. Marks: 100

Semester: III

Instructions: "Open Book Exam" – textbooks and notes are allowed during the Examination

SECTION A

S. No.		Marks	CO
Q 1	a) Explain the three main types of Thermal Storage systems.b) Give one advantage and one disadvantage of sensible heat storage systems.	4	CO1
Q 2	a) Show the main components of a "Stand-Alone Solar PV system" on a schematic.b) What are the two main functions of the Charge Controller ?	4	CO2
Q 3	State the typical structure of a Cadmium telluride / Cadmium sulphide solar cell on a glass substrate, with a metal back contact and a transparent front contact. Indicate the direction from which solar radiation strikes the solar cell. (Cadmium Telluride has a band gap of 1.4 eV, and Cadmium Sulphide has a band gap of 2.4 eV)	4	CO2
Q 4	A wind monitoring station has a 30 meter wind mast that measures wind speeds at two levels: 20 m and 30 m above ground level (a.g.l.). If the wind speed at 20 m a.g.l. is 5.0 m/s when the wind speed at 30 m a.g.l. is 5.5 m/s, then, using the power law estimate the wind speed at 50 m.	4	CO3
Q 5	a) Explain the difference between Combustion and Gasification.b) Explain the difference between Biogas and Producer gas.	4	CO4
	SECTION-B		
Q 6	Calculate the Monthly Average Daily Radiation (for February) falling on a flat-plate collector facing south with a slope of 30 degrees. The collector is located in New Delhi – use radiation data given in Appendix-3 of your textbook. Assume Ground Reflectivity to be 0.2	10	C01
Q 7	Define the following terms:	10	CO2
	 a) Short circuit current b) Open circuit voltage c) Fill Factor d) Maximum Power Point 		


	module.	for a typical				
	The rotor blades of a mechanical Windpump are made from Curved Plates (10% curvature). The blades are strengthened with a tube welded along the length of the blade in the middle. The tube can be welded either on the concave side or on the convex side of the curved plate. Compare the Airfoil characteristics of these two options (given in the Table below) and explain whether it is better to use a "Curved plate with tube on concave side" or a "Curved plate with tube on convex side". Table 9.3 Airfoil characteristics $\frac{\zeta_d/\zeta_l}{\alpha \zeta_l}$					CO3
Q 8						
		0.10	5	0.80		
	Curved plate (10% curvature)	0.02	3	1.25		
	Curved plate with tube on concave side	0.03	4	1.10		
	Curved plate with tube on convex side	0.20	14	1.25		
	Airfoil NACA 4412	0.01	4	0.80		
	Explain the process for producing the biofuel E schematic to show the main steps in the proces necessary.					
Q 9	schematic to show the main steps in the proces	s. Give Che	mical Equ	ations wherever	10	CO4
Q 9	 schematic to show the main steps in the process necessary. OR a) Explain the production of Briquettes from a (Draw a schematic). b) Discuss the advantages of Briquetting. 	s. Give Che	mical Equ	ations wherever	10	CO4

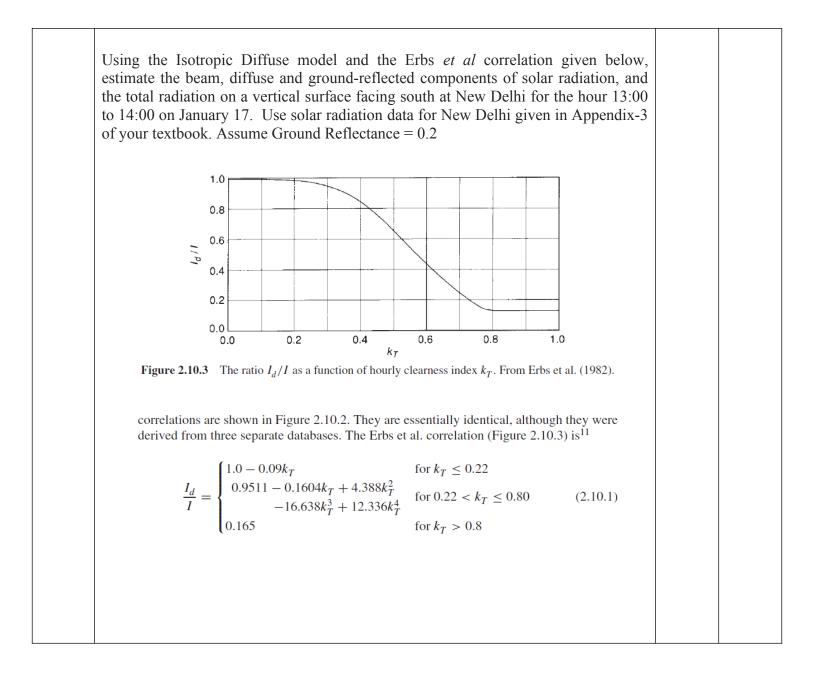
	• 60 Ah B	atteries with Nominal Vol	tage = 6V.				
	Use solar radiati	on data for New Delhi giv	ven in Appendix-3 o	f your textbook.			
	Assume:						
	• Inverter						
	• Depth of						
	Battery I						
	Your design sho						
		Bank and Charge Controll		inverter, solur i v			
	Time series Hou						
		f 2 m/s as shown in Table	-	-			
	-	Wind Turbine Power Curv		-			
		that is installed at a site w					
		the Method of Bins, Calc		requercy at hub			
		Average Wind Speed.	ulate.				
	/	0 1	aity (Air Donaity —	$1.225 \ln (m^3)$			
		Average Wind Power Der Annual Power Generation					
	b) (Capacity Utilization Facto	or (Rated Power = $/$.	5 KW).			
	Wind Speed						
	wind Speed	Frequency Distribution Number of	POWERCURV	E for Wind Turbine			
	Bin Width	Occurences	Wind Speed	Power Output			
	m/s	Hours	m/s	kW			
	0 - 2	440	0	0.0			
	2 - 4	935	1	0.0			
0.11	4 - 6	1313	2	0.0	20	CO1	
Q 11	6 - 8	1468	3	0.0	20	CO3	
	8 - 10	1515	4	0.2			
	10 - 12	1192	5	0.7			
	12 - 14	860	6	1.4			
	14 - 16	514	7	2.2			
	16 - 18	311	8	3.1			
	18 - 20	149	9	4.3			
	20 - 22	63	10	5.4 6.6			
	TOTAL			0.0			
	=	8760	12	7.5			
			13	8.1			
			14	8.1			
			15	7.9			
			16	7.8			
			17	7.5			
			18	7.3			
			19	7.1			

		20	7.0
		21	6.7
		22	6.5

<u>OR</u>

Using the Isotropic Diffuse model and the Erbs *et al* correlation given below, estimate the beam, diffuse and ground-reflected components of solar radiation, and the total radiation on a vertical surface facing south at Mumbai ($19^{\circ}07^{\circ}N$, $72^{\circ}51^{\circ}E$) for the hour 11:00 to 12:00 on March 16. Use solar radiation data for Mumbai given in Appendix-3 of your textbook. Assume Ground Reflectance = 0.2

Figure 2.10.3 The ratio I_d/I as a function of hourly clearness index k_T . From Erbs et al. (1982).


correlations are shown in Figure 2.10.2. They are essentially identical, although they were derived from three separate databases. The Erbs et al. correlation (Figure 2.10.3) is¹¹

$$\frac{I_d}{I} = \begin{cases} 1.0 - 0.09k_T & \text{for } k_T \le 0.22 \\ 0.9511 - 0.1604k_T + 4.388k_T^2 & \text{for } 0.22 < k_T \le 0.80 \\ -16.638k_T^3 + 12.336k_T^4 & \text{for } 0.22 < k_T \le 0.80 \end{cases}$$
(2.10.1)

Name: Enrolment No:					
Enrolme	nt No:				
		ROLEUM AND ENERGY STUDIES			
C		xamination, December 2018			
Course:	Renewable Energy Technologies – 2 nme: M.Tech. Energy Studies	2 (EPEC 8003) Semester: I	11		
Time:	03 hrs.	Max. Marks	• 100		
Instruct			. 100		
mstruct		SECTION A			
	-				
S. No.			Marks	CO	
	,	am, Diffuse and Reflected solar radiation?			
Q 1		Global radiation falling on a Tilted Surface	4	CO1	
	and explain all the parameters used.				
	Explain the following terms:				
0.2	a) P-type semiconductor		4	cor	
Q 2	b) Drift of carriers	4	CO2		
	c) Intrinsic Semiconductors				
	d) Metallurgical grade silicona) What is the difference between a "St	and-Alone Solar PV system" and a "Grid-			
Q 3	connected Solar PV system" ?	and Atlone Solar I v System and a Grid	4	CO2	
	5	nd-Alone Solar PV system" on a schematic.			
	At a height of 20 metres above ground le	evel (a.g.l.) the reference wind speed is 5.0			
Q 4	m/s. Using the Logarithmic Law, estimate	te the wind speeds at a height of 30 metres	4	CO3	
V 7	a.g.l. The terrain at the site is 'Rough pa	-	COS		
	10 mm.				
0.5	Explain why a Down-draft Gasifier is bet	ter than an Up-draft Gasifier for power	4	604	
Q 5	generation.		4	CO4	
	Calculate the Monthly Average Hourly	Radiation (for 10 am – 11 am in March)			
0.6		th with a slope of 20 degrees. The collector	10	601	
Q 6		ata given in Appendix-3 of your textbook.	10	CO1	
	a) What are the three types of Silicon use	ed to manufacture solar photovoltaic cells ?			
Q 7	· · ·	e process for manufacturing single crystal	al 10 CO2		
	silicon using the Czochralski method.	(draw a schematic).			

	Table 9.3 Airfoil characteristics		1 Station			
	the rest in the second will					
	Flat plate	0.10	5	0.80		
	Curved plate (10% curvature)	0.02	3	1.25		
	Curved plate with tube on concave side	0.03	4	1.10		
Q 8	Curved plate with tube on convex side	0.20	14	1.25	10	CO3
Q 0	Airfoil NACA 4412	0.01	4	0.80	10	
	 The Table given above shows the Airfoil chara used in wind turbines. a) Which of the five airfoils would you Generator and why? b) A low-cost mechanical Windpump is Curved Plates (10% curvature). Compare suitable for this application. 	use for the r fabricated v pare the three	rotor of a with a rote airfoils in	Wind Electric or made from the table that		
Q 9	Explain the process for producing the biofuel schematic to show the main steps in the proces necessary OR				10	CO4
	Compare the Environmental Impacts of	of Biochem	ical con	version with		
	Thermochemical conversion of lignocellulosic		Ethanol.			
	SECT	ION-C				
Q 10	Design a stand-alone Solar PV system which ca	n be installed	d in Mumb	ai for	20	CO2
	supplying power to a School having following				-	
	• Twenty Lights, 15W each					
	• Ten Fans, 60W each					
	• Two Computers, 100W each					
	The computers are operated four hours every da	ans for eight				
	hours a day. The system should be designed so					
	consecutive days without sunshine in Mumbai					
	following equipment that is already available :					
	• 75 Wp SPV modules, Nominal Voltage		current			
	• 60 Ah Batteries with Nominal Voltage =	= 6V.				
		= 6V.				

	• Depth of I	Discharge of batteries	= 80%			
	Battery Ef					
	Your design should provide the technical specification of the Inverter, Solar PV					
	Array, Battery Ba					
Q 11			pelow (left side) as Frequ	uency of Occurrence (20	C01
			The Table on the right			CO3
			KCEL-R wind turbine ra			
			frequency at hub height.	Calculate:		
		Average Wind Spec		2		
	b)	-	er Density (Air Density	$r = 1.225 \text{ kg/m}^3$).		
	c)					
	d)	Capacity Utilization	n Factor (Rated Power =	7.5 kW).		
			POWER CURVE	for Wind Turbing		
	V, m/s	f-j	Wind Speed	Power Output		
	v, 111/5	1 - J	m/s	kW		
	0 - 4	1,375	0	0.0		
	4 - 8	2,781		0.0		
	8 - 12	2,707	2	0.0		
	12 - 16	1,374	3	0.0		
	16 - 20	460	4	0.2		
	20 - 24	58	5	0.7		
	24 - 28	5	6	1.4		
			7	2.2		
	TOTAL	8760	8	3.1		
			9	4.3		
			10	5.4		
			11	7.5		
			13	8.1		
			14	8.1		
			15	7.9		
			16	7.8		
			17	7.5		
			18	7.3		
			19	7.1		
			20	7.0		
			21	6.7		
			22	6.5		
			23	6.3		
			24	<u>6.0</u> 5.8		
			23	5.0		
	OR					

