Name:

Enrolment No:

UPES

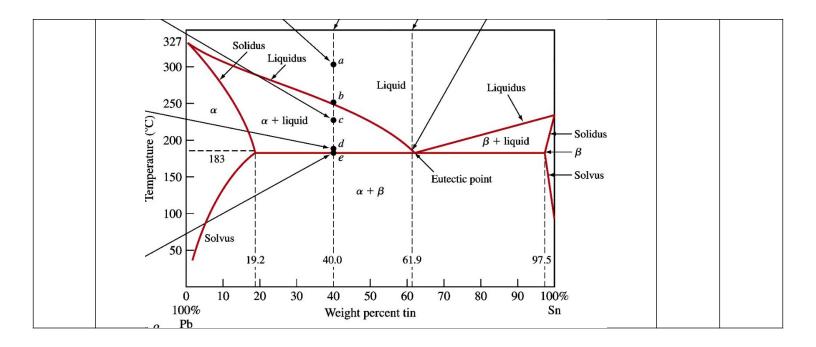
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: B. Tech Mechanical Course Name : Material Science **Course Code** : MEMA 2001

Semester : III Time : 03 hrs Max. Marks: 100

Nos. of page(s) :02


Instructions: 1. Assume data only if required and mention the assumption clearly.

2. Use graph sheet for Q8.

SECTION A : 2

S. No.					Marks	CO
Q 1	Sketch completely la	4	CO2			
Q 2	Define superalloys ar	4	CO4			
Q 3	Discuss various fatig	4	CO4			
Q 4	a. Differentiate betwee b. Define creep.	4	CO4			
Q 5	Differentiate betweer	4	CO1			
		SECTI	ON B : 40 marks			
Q 6	Define composites. C	10	CO4			
Q 7	Discuss Griffith's theory of fracture. Derive the expression for critical stress for crack propagation.					CO4
Q 8	Data for tensile test for a. Plot labelled or region, plastic b. Calculate You	eld point, UTS, elastic	6+4	C01		
	Engineernig Stress	Engineernig Strain	Engineernig Stress	Engineernig Strain		
	(MPa) (MPa)					
	0	0	524	0.08		
	210	0.001	515	0.10		
	380	0.002	500	0.12		
	415	0.005	475	0.14		
	470	0.01	448	0.16		
	490	0.02	385	0.18		

	510 517	0.04 0.06	355	0.19 (Fracture)		
			2			
Q 9	Calculate the c and atomic ma					
	A sample of wavelength 0. = 88.838°. Ca order diffraction	10	CO1			
			SECTION C: 40 m	arks	•	·
Q 10	B. Under C. How cr D. What t	rystal structure of M	ions Martensite forms artensite is formed or		10 2 4 4	СОЗ
	1					
	F. Discus	Hardenability. s Jominy End Quences s Martempering, Au	th test. stempering and Nitrid	ding Processes.	4 4 12	
Q 11	Given below i alloy is cooled a. The we b. The we the euto	s the phase diagram from 300 °C, calcu- eight percent of liqui- eight percent and w ectic temperature (12)	of Pb-Sn alloy. If o late: d and alpha at 250 °C eight in kilograms o	ne Kg of 70 % Pb- 30 % Sn C. f liquid and alpha just above	20	CO2

