

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Digital Image Processing AVEG8005 Time: 03 hrs. Programme: M.Tech (UAV)

Max. Marks: 100

Instructions:

	SECTION A All questions are compulsory		
S. No.	and questions are comparison.	Marks	CO
Q 1	What is image compression? Why it is needed?	4M	CO1
Q 2	Write the difference between Fourier transform and wavelet transform.	4M	CO2
Q 3	Define convolution and explain its use in image processing.	4M	CO3
Q 4	What is the significance of local variance in adaptive filters?	4M	CO4
Q 5	Define an image. List out and explain the various areas of applications of image processing	4M	CO3
	SECTION B		•
	All questions are compulsory and each carries 10 marks.		
Q.6	Explain image sharpening using Butterworth high pass and Gaussian high pass filters.	10M	CO3
Q.7	Explain about image smoothing using Ideal low pass filter.	10M	CO3
Q.8	Suggest the significance of noise model in image processing. Detail the mathematical expressions, and plot for different noise probability functions to support their features.	10M	CO4
Q.9	State and Prove the Fourier Slice Theorem for Image Tomography	10M	CO5
	SECTION-C Attempt any two questions and each carries 20 marks		1
Q 10	Consider the image segment shown		
× 10	3 1 2 1 (q) 2 2 0 2 1 2 1 1 (p) 1 0 1 2	20M	CO1
	Let V={0,1} and compute the lengths of the shortest 4-,8- and m-path between p and q.If a particular path does not exists between these two points, explain why?		
Q 11	Draw the frequency response curve of low pass, high pass, Band pass and Band reject filters with respect to image filtering operations and suggest the suitable example of each.	20M	CO2

