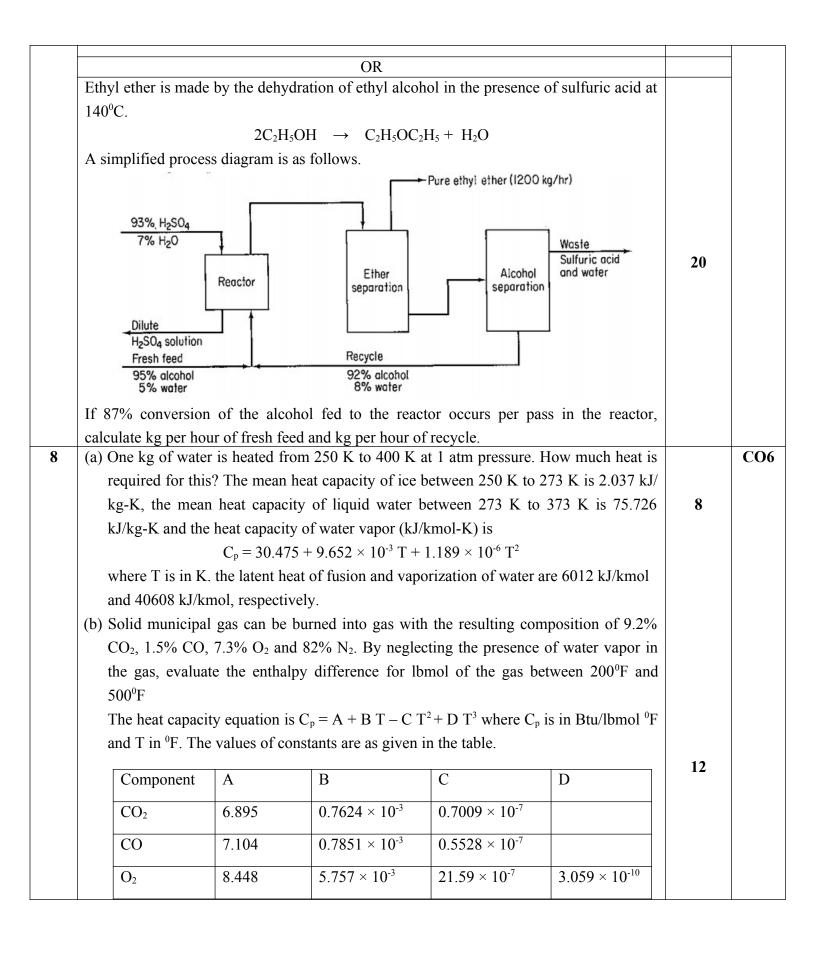
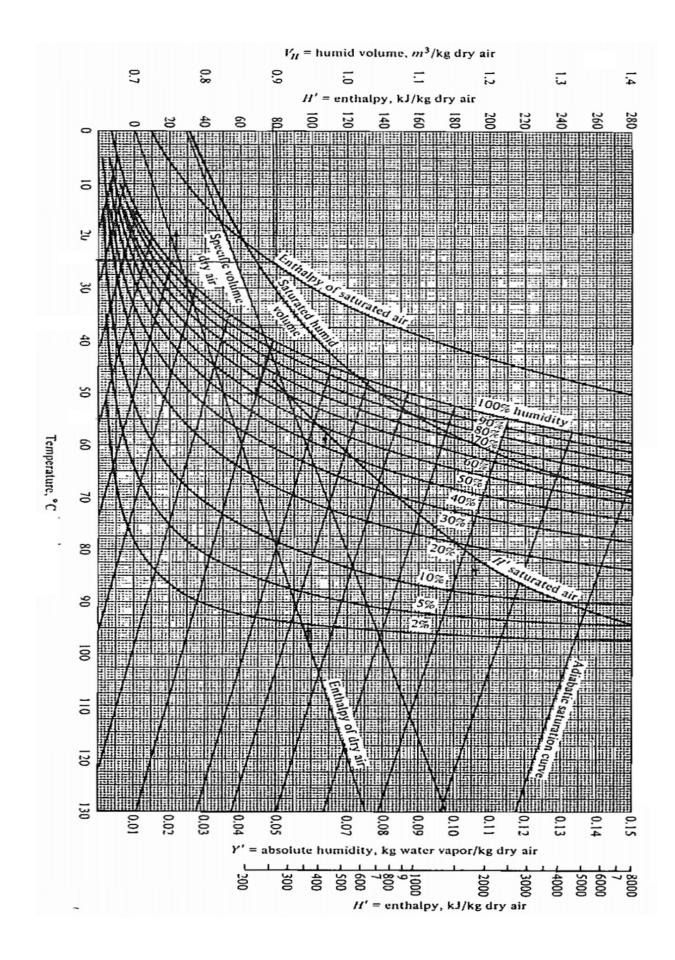
Name Enrol	ame: nrolment No:						
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIE	ES					
	End Semester Examination, December 2018						
Programme Name:B. Tech. (APE-Gas/ CERP)SemesterCourse Name:Chemical Process CalculationsTimeCourse Code:CHCE 2005Max. MaxNos. of page(s):03Max		: III : 3 hrs s : 100					
Instr	uctions : Assume any missing data. Draw the diagrams, wherever necessary.						
	SECTION-A $(10 \times 6 = 60 \text{ marks})$ (Answer all the questions)						
		Marks	CO				
1.	The following equation represent the heat capacity of air (with C_p in cal/(gmol-K) and T in K): $C_p = 6.39 + 1.76 \times 10^{-3} \text{ T} - 0.26 \times 10^{-6} \text{ T}^2$ Derive an equation giving C_p in terms of Btu/(lb- ⁰ F) with temperature being expressed in	10	CO1				
	^o F.						
2.	 Phosgene gas can be made by the catalytic reaction between CO and chlorine gas in presence of a carbon catalyst. The chemical reaction is CO + Cl₂ → COCl₂ The reaction products from a given reactor contain 3 kg of Chlorine, 10 kg of Phosgene and 7 kg of CO. Calculate the following: (a) the percent excess reactant used, (b) the percentage conversion of the limiting reactant, (c) the kmol of phosgene formed per kmol of total reactants fed to the reactor. 	10	CO2				
3.	 (a) Define Raoult's Law. What are the characteristics of ideal solutions? (b) The vapor pressure of water at 363 K and 373 K are 70.11 kPa and 101.3 kPa, respectively. Estimate the mean heat of vaporization (kJ/kg) of water in this temperature range. 	2+2 6	CO3				
4.	A mixture of benzene vapor and nitrogen gas at 105 kPa and 330 K contains benzene vapor to the extent that it exerts a partial pressure of 15 kPa. The vapor pressure of benzene is given by the Antoine equation $\ln P^{s} = 13.8858 - \frac{2788.51}{T - 52.36}$	10	CO4				

	where P^s is in kPa and T is in K. Determine the following:		
	(a) the molal humidity		
	(b) the absolute saturation humidity		
	(c) the percent humidity		
	(d) the percent relative humidity		
	(e) the mass of benzene in 100 m^3 of the mixture		
5.	A fresh pressed juice contains 5% of total solids and it is desired to raise this percentage		
	to 10% of total solids by evaporation and then to add sugar to give 2% of added sugar in		
	the concentrated juice. Calculate the quantity of water that must be removed and of sugar	10	CO5
	that must be added with respect to each 100 kg of pressed juice.		
6.	One kg of water is heated from 250 K to 400 K at 1 atm pressure. How much heat is		
	required for this? The mean heat capacity of ice between 250 K to 273 K is 2.037 kJ/kg-		
	K, the mean heat capacity of liquid water between 273 K to 373 K is 75.726 kJ/kg-K and		
	the heat capacity of water vapor (kJ/kmol-K) is	10	CO6
	$C_p = 30.475 + 9.652 \times 10^{-3} \text{ T} + 1.189 \times 10^{-6} \text{ T}^2$		
	where T is in K. the latent heat of fusion and vaporization of water are 6012 kJ/kmol and		
	40608 kJ/kmol, respectively.		
	SECTION-B ($20 \times 2 = 40$ marks)		
7.(a)	(Answer both questions) Dry coke composed of 4% inert solids (ash), 90% carbon and 6% hydrogen is burned in		
7.(a)	a furnace with dry air. The solid residue after combustion contains 10% carbon and 90%		
	inert ash (and no hydrogen). The inert ash content does not enter into the reaction. The	8	
	Orsat analysis of the flue gas gives 13.9% CO ₂ , 0.8% CO, 4.3% O ₂ and 81% N ₂ .	-	
	Calculate the percent excess air used based on the complete combustion of coke.		
	Calculate the percent excess an used based on the complete combustion of coke.		
(b)	Fresh feed stream flowing at 100 kg/h contains 20% by weight KNO ₃ in H ₂ O. The fresh		CO5
	feed stream is combined with a recycle stream and is fed to an evaporator. The	12	
	concentrated liquid solution exited the evaporator contains 50% KNO3 is fed to a	12	
	crystallizer. The crystals obtained from the crystallizer are 96% KNO ₃ and 4% water.		
	The liquid from the crystallizer constitutes the recycle stream and contains 0.6 kg KNO ₃		
	per 1.0 kg of H ₂ O. Calculate all stream flow rate values and compositions.		
8.	Hydrogen gas is burned in an adiabatic reactor with two times the theoretical quantity of		CO6
	air, both air and hydrogen being initially at 298 K. What will be the temperature of the		

The heat capacities (kJ/kmol-K) of the gases are given below:					
Vater vapor $C_p = 30.475 + 9.652 \times 10^{-3} \text{ T}$					
itrogen $C_p = 27.034 + 5.815 \times 10^{-3} \text{ T}$					
xygen $C_p = 25.611 + 13.26 \times 10^{-3} \text{ T}$					
OR					
solution of 10% (weight) acetone in water is subjected to fractional distillation at a rate					
f 1000 kg/h to produce a distillate containing 90% acetone and a bottom product					
ontaining not more than 1% acetone. Feed enters at 340 K; distillate and residue leave					
e tower at 300 K and 370 K, respectively. A reflux ratio of 8 kg/h of liquid reflux to					
g/h of distillate product is employed. The rise in temperature of 30 K is permitted for					
e cooling water circulated in the condenser employed for condensing the vapours into	20				
e distillate product and the reflux. Saturated steam at 276 kPa is available for supplying					
eat of vaporization in the reboiler. Latent heat of steam at 276 kPa is 2730 kJ/kg. Heat					
sses from the column may be neglected. The heat capacity of acetone is 2.2 kJ/kg-K					
nd that of water is 4.2 kJ/kg-K. The boiling point of 90% acetone-water solution is 332					
. The latent heat of acetone at 332 K is 620 kJ/kg and that of water is 2500 kJ/kg.					
alculate the following:					
) the cooling water circulation rate					
b) the rate of circulation of steam					


CONFIDENTIAL

Name of Examination (Please tick, symbol is given)	:	MID			END		SUPPLE				
Name of the School (Please tick, symbol is given)	:	SOE	\checkmark		SOCS		SOP				
Programme	:	B. Tec	h. (A	PE-Ga	s) / CERF	P)					
Semester	:	Ш									
Name of the Course	:	Chemic	al Pr	ocess C	alculation	8					
Course Code : CHCE 2005											
Name of Question Paper Setter	:	[:] Dr. Rajeshwar Mahajan									
Employee Code	:	400000	36								
Mobile & Extension	:	9997843	97843732/1313								
Note: Please mention addit Table/Graph Sheet etc. elso							imination such as				
		FOR	OF	FICE	USE						
Date of Examination			:								
Time of Examination	Time of Examination										
No. of Copies (for Print)			:								


Note: - Pl. start your question paper from next page

Name		5		
Enrol				
	UNIVERSITY OF PETROLEUM AND ENERGY S	STUDIES		
	End Semester Examination, December 2018			
Cour	rse Name : Chemical Process Calculations Tin	nester : II ne : 3 1x. Marks : 10	hrs	
	of page(s) : 04			
Instr	ructions : Assume any missing data. Draw the diagrams, wherever neces	ssary.		
	SECTION-A (25 × 4 = 60 marks) (Answer all the questions)			
		M	arks	CO
1.	(a) The conductance of a fluid flow system is defined as:			
	$C = 89.2 A \sqrt{\frac{T}{M}} \frac{ft^3}{s}$			
	111 5		5	
	where A is area of opening in ft^2 , T is temperature in ⁰ R and M is mol			601
	Convert this empirical equation into SI units with temperature expressed in K			CO1
	(b) Calculate the empirical formula of an organic compound with followi	ng mass	5	
	analysis:			
	Carbon 26.9%; Hydrogen 2.2%; and oxygen as the only other element prese	ent.		
2.	The electrolytic manufacture of chlorine gas from a sodium chloride solution i	s carried		
	out by the following reaction.			
	$2 \operatorname{NaCl} + 2 \operatorname{H}_2 O \rightarrow 2 \operatorname{NaOH} + \operatorname{H}_2 + \operatorname{Cl}_2$			~~~
	How many kilograms of Cl_2 can be produced form 10 m ³ of a brine solution con		10	CO2
	weight % of sodium chloride? The specific gravity of the solution relative to	water is		
	1.07 at 4°C.			
3	Calculate the total pressure and composition of vapors in equilibrium with a so	olution at		
	100°C, containing 35% Benzene(C ₆ H ₆), 40% Toluene (C ₆ H ₅ CH ₃)and the res	st ortho-		
	Xylene $(C_6H_4(CH_2)_2)$ by weight percent.			CO3
	Vapor pressures at 100°C is		10	
	Benzene = 1340 mmHg Toluene = 560 mmHg o-Xylene= 210 mm Hg			
4.	An air water system has a dry bulb of 55°C and an absolute humidity 0.03 kg	water/kg	10	CO4
	dry air at 1 atmospheric pressure. Using Psychrometric charts, calculate	-		
	humidity, molal absolute humidity, partial pressure of water vapor in the sample			
	humidity and the dew point temperature. (Vapor pressure of water at 55 °C			

	mmHg.)							
5		process for the production of	SO ₃ is to	b be used in the	manufacture of			
	sulfuric acid is as follows: Air $\xrightarrow{SO_2}$ $\xrightarrow{O_2}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_3}$ $\xrightarrow{SO_3}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_3}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_3}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_3}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_3}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_3}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_3}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_3}$ $\xrightarrow{SO_2}$ $\xrightarrow{SO_3}$ \xrightarrow							
	sulfur dioxide converter, and	is only 90%. Assuming the conversion of SO_2 to SO_3 is lso find the exiting gas compo	e excess c 95%, find	oxygen present i kg of air require	s utilized in the ed per 100 kg of			
6	An inventor thinks that he has developed a new catalyst that can make the gas phase reaction $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$ Proceeding with 100% conversion, estimate the heat must be provided or removed, if the gases enter and leave at a temperature of 500°C. $C_p = a + b T + c T^2$ where T in K							
	Component	Standard Heat of formation (J/gmol) at 298K	a	b	С	10	CO6	
	CO ₂	-393513	26.75	42.26 × 10 ⁻³	-14.25 × 10 ⁻⁶			
	H ₂	0	26.88	4.35 × 10 ⁻³	-0.33 × 10 ⁻⁶			
	H ₂ O	-241826	29.16	14.49 × 10 ⁻³	-2.02 × 10 ⁻⁶			
	CH ₄	-74828	13.41	77.03 × 10 ⁻³	-18.74 × 10 ⁻⁶			
		SECTION-	B (20 × 2	= 40 marks)				
		(Answedd bed reactor glucose is conv	er both qu		-1:1:1			
7.	isomerase enters wi convert a convert th	15	CO5					
	found tha fractional (b) A hydro	stream, the concentration of at the ratio of exit stream to conversion for one pass throu ocarbon fuel is burnt with ex 0.2% CO ₂ , 1.0%CO, 8.4% O	the recy of the read cess air. T	cle stream is 7. ctor. The orsat analysis	33. Evaluate the s of the flue gas			

		N ₂	6.865	0.8024×10^{-3}	0.7367 × 10 ⁻⁷					
--	--	----------------	-------	-------------------------	---------------------------	--	--	--	--	--

