QUESTION PAPER

SECTION B (40 Marks)

	Answer all the questions.		
Q 6	Design a logic gate diagram of the obtained minimize expression using Universal 'NOR' gate. The Boolean expression is: $Y=A+B(A C+(B+\bar{C}) D)$	10	CO3
Q 7	Determine the output voltage of the circuit shown in Fig. (3).	10	CO2
Q 8	Find the minimal sum of product for the Boolean expression $\mathrm{F}=\sum \mathrm{m}(1,2,3,7,8,9,10,11,14,15)$ using Quine- McCluskey method.	10	CO3
Q 9	Attempt both the parts: (a) Elucidate the data transmission operation in the shift registers. (b) Design and analyze the operation of a 4-bit serial in- serial out shift register.	10	CO4

SECTION-C (40 Marks)

	Answer all the questions.		
Q 10	Design the combinational logic circuit for (i) an Even Parity Bit Generator for a 4-bit (A, B, C, D) input data (ii) an Odd Parity Bit Generator for a 4-bit (A, B, C, D) input data	$\mathbf{1 0 + 1 0}$	$\mathbf{C O 3}$

Q 11	- Attempt both the parts: (a) Design a combinational logic circuit diagram that accepts a 4-bit Gray code (G4, G3, G2, G1) and provide 4-bit binary code (B4, B3, B2, B1). (b) Design and analyze the operation of a synchronous mode-6 Gray code converter using ' T ' Flip-flop. OR Implement the following function using 8:1 MUX- $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,2,3,5)$	10+10	$\begin{gathered} \mathrm{CO} 3 / \\ \mathrm{CO} 4 \end{gathered}$

QUESTION PAPER

Name: Enrolment No:	\checkmark
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018	
Course: Analog and Digital Electronics (ECEG-2002) Program: B. Tech- Mechatronics Time: 03 hrs.	Semester: III Max. Marks: 100

SECTION A (20 Marks)

S. No.	Answer all the questions.	Marks	CO
Q 1	Given $h_{\text {ie }}=2.4 \mathrm{k} \Omega, h_{f e}=100, h_{r e}=4 \times 10^{-4}$ and $h_{o e}=25 \mu S$. Sketch the common emitter hybrid equivalent model.	$\mathbf{4}$	$\mathbf{C O 1}$
Q 2	A single stage transistor amplifier has a voltage gain of 600 without feedback and 50 with feedback. Find the percentage of output which is feedback to the input side.	$\mathbf{4}$	$\mathbf{C O 2}$
Q 3	What is the range of the output voltage in the circuit of Fig. (1). If the input voltage can vary from 0.1 V to 0.5 V ?		
$\mathrm{V}_{1}(0.1 \mathrm{~V}-0.5 \mathrm{~V})$	$\mathbf{4}$	$\mathbf{C O 3}$	

| Q 4 | Redraw the circuit given in Fig. (2) after simplification | |
| :--- | :--- | :--- | :--- | :--- |

SECTION B (40 Marks)

	Answer all the questions.		
Q 6	Minimize the minterm using (i) SOP and (ii) POS expressing using K-map $\mathrm{F}(\mathrm{ABCD})=\sum \mathrm{m}(2,3,6,7,10,11,12)$	10	CO4
Q 7	The circuit shown in Fig. (3) is an instrumentation amplifier. Determine the range which its gain can be varied if potentiometer is varied over its entire range. Fig. (3)	10	CO2
Q 8	Draw the logic diagram using only two input NAND gates to implement the	10	CO 3

	following Boolean expression $\mathrm{F}=(A B+\bar{A} \bar{B})(C \bar{D}+\bar{C} D)$		
Q 9	Design and analyze the operation of parallel in- parallel out shift registor. OR Design and analyze the operation of 3-bit up counter, which has counting sequence $000,001,010,011,100,101,110,111,000, \ldots \ldots \ldots$. Using J-K Flip-flops.	10	CO4
SECTION-C (40 Marks)			
	Answer all the questions.		
Q 10	Design the logic diagram using NAND universal gate of obtained reduced expression of minimal expression for $\mathrm{F}=\sum \mathrm{m}(6,7,8,9)+\mathrm{d}(10,11,12,13,14,15)$ using Quine- McCluskey method.	20	CO3
Q 11	- Attempt both the parts: (a) Design a synchronous BCD counter using J-K Flip-flops. (b) Design a circuit that can be built using AOI logic and outputs a ' 1 ' when a 4-bit hexa-decimal input is an odd number from 0 to 9 . OR Design a 5-bit comparator using a single 7485 4-bit comparator.	10+10	$\begin{aligned} & \mathrm{CO} 4 / \\ & \mathrm{CO} \end{aligned}$

