Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018			
Course: Analog and Digital Electronics (ECEG2025) Semester: III Program: B. Tech. / PSE Time: 03 hrs. Max. Marks: 100 Instructions: Attempt all the sections.			
SECTION A		($5 \times 4=20)$	
S. No.	Draw the output waveform for the clipper circuit shown in figure 1. Figure 1	Marks	CO
Q 1		4	CO1
Q 2	A transistor is connected in common emitter (CE) configuration in which collector supply $\left(\mathrm{V}_{\mathrm{cc}}\right)$ is 8 V and the voltage drop across resistance R_{C} connected in the collector circuit is 0.5 V . The value of $\mathrm{R}_{\mathrm{C}}=800$ ohm. If $\alpha=0.96$, determine: (i) collector-emitter voltage (ii) base current Figure 2	4	CO2
Q 3	Simplify the expression $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(0,1,4,5,6,8,9,12,13,14)$ using K-map and implement the result using NAND gates.	4	CO3

Q 4	Differentiate the following (a) Combinational and Sequential circuits (b) Level-triggered and Edge-triggered flip-flops	4	CO4
Q 5	(a) Encode data bits 0101 into a 7-bit even parity Hamming code. (b) A 7-bit Hamming code is received as 0101101 . What is its correct code?	4	CO3
SECTION B		$(4 \times 10=40)$	
Q 6	(a) Implement the following boolean expression using a 8 to 1 multiplexer. $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,3,4,8,9,15)$ (b) Design and implement octal to binary encoder.	5+5	CO3
Q 7	(a) A $230 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{a}. \mathrm{c} \mathrm{voltage} \mathrm{is} \mathrm{applied} \mathrm{to} \mathrm{the} \mathrm{primary} \mathrm{of} \mathrm{a} 5:$.1 step-down transformer which is used in a bridge rectifier having a load resistor of value 500 ohm. Assuming the diodes to be ideal, determine the following: (i) d. c. output voltage (ii) d. c. power delivered to the load (iii) PIV of each diode (iv) output frequency (b) Design and implement D flip-flop using S-R flip-flop.	5+5	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} \end{aligned}$
Q 8	(a) Determine the operating point of the transistor biasing circuit shown in figure 3. The value of $\beta=85$ and $V_{B E}=0.7 \mathrm{~V}$. Figure 3 (b) Derive the expression of stability factor for the voltage divider bias circuit.	5+5	CO2
Q 9	Design a MOD-6 counter using J-K flip flops. OR Design a synchronous BCD counter using J-K flip flops.	10	CO4
SECTION C		$(2 \times 20=40)$	
Q 10	(a) Design a 4-bit gray to binary code converter.	10	CO3

	(b) Design a combinational circuit that accepts a 4-bit number and generates a output binary number equal to the square of the input number.	$\mathbf{1 0}$	CO3
Q11	(a) Design a self-correcting MOD-9 shift counter using D flip-flops. (b) An air-conditioning unit is controlled by four variables: temperature T, humidity H, the time of the day D, and the day of the week W. The unit is turned on under any of the following circumstances. 1. The temperature exceeds $78^{\circ} \mathrm{F}$, and the time of the day is between $8 \mathrm{a} . \mathrm{m}$. and 5 p. m. 2. The humidity exceeds 85%, the temperature exceeds $78^{\circ} \mathrm{F}$, and the time of the day is between 8 a. m. and $5 \mathrm{p} . \mathrm{m}$. 3. The humidity exceeds 85%, the temperature exceeds $78^{\circ} \mathrm{F}$ and it is a weekend. 4. It is Saturday or Sunday and humidity exceeds 85%. Write a logic expression for controlling the air-conditioning unit. Simplify the expression obtained as far as possible.	$\mathbf{1 0 + 1 0}$	$\mathbf{C O 4 ,}$
$\mathbf{C O 3}$			

Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018			
Course: Analog and Digital Electronics (ECEG2025) Semester: III Program: B. Tech. / PSE Time: 03 hrs. Max. Marks: 100 Instructions: Attempt all the sections.			
SECTION A		(5 X $4=20$)	
S. No.		Marks	CO
Q 1	In the figure 1, find the minimum and maximum value of zener diode current. Figure 1	4	CO1
Q 2	Determine the VCB in the circuit shown in figure 2. The transistor is of silicon and has $\beta=150$. Figure 2	4	CO2
Q 3	Simplify the following Boolean function and obtain (i) minimal SOP (ii) minimal POS expressions $F(A, B, C, D)=\sum m(1,3,7,11,15)+\sum_{d}(0,2,5)$	4	CO3
Q 4	Explain the operation of master-slave flip-flop and show how the race around condition is eliminated in it.	4	CO4

Q 5	Convert the following codes (i) $(96.42)_{10}=()_{\mathrm{BCD}}$ (ii) $(643)_{10}=()_{\text {Excess } 3}$ (iii) $(10101101)_{2}=()_{\text {Gray code }}$ (iv) $(110101)_{\text {Gray code }}=()_{2}$	4	CO3
	SECTION B ((4 X10 = 40 Marks)	
Q 6	(a) Design and implement J-K flip-flop using S-R flip-flop. (b) A $220 \mathrm{~V}, 50 \mathrm{~Hz}$ a. c. voltage is applied at the primary of a $4: 1$ step-down, centertap transformer used in a full wave rectifier having a load resistance of 800 ohm . If the diode resistance has a value of 200 ohm, determine: (i) d. c. voltage across the load (ii) d. c. current flowing through the load (iii) d. c. power delivered to the load (iv) PIV across each diode (v) output frequency	5+5	$\begin{aligned} & \mathrm{CO4} \\ & \mathrm{CO} \end{aligned}$
Q 7	Find the minimal sum of product for the Boolean expression using the Quine- McCluskey (Tabulation) method. $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,3,6,7,8,10,12,15)$	10	CO3
Q 8	Determine the operating point and the stability factor for the biasing circuit shown in figure 3. The value of $\beta=100$ and $V_{B E}=0.7 \mathrm{~V}$. Figure 3	10	CO2
Q 9	Design a 4-bit synchronous down counter that counts through all states from 1111 down to 0000 . OR	10	CO4

	Design a 4-bit unit distance Up-Down counter using D flip-flops.		
SECTION C ${ }^{\text {C }}$ (2 X 20 = 40)			
Q 10	(a) Design a 4-bit binary to Gray code converter. (b) Implement three-variable Boolean function $F=\bar{A} C+A \bar{B} C+B \bar{C}$ using (i) 8-to-1 multiplexer (ii) 4-to-1 multiplexer.	10+10	CO3
Q 11	(a) Design a even parity bit generator for a 4-bit input. (b) Design a MOD-7 Johnson counter using J-K flip-flops.	10+10	$\begin{gathered} \mathrm{CO} 3 \\ \mathrm{CO} \end{gathered}$

