
N											
Name:											
Enrolme	ent No:										
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES										
	End Semester Examination, December 2018	_									
	8 8	I									
Course	03 hrs										
Course		100									
Nos. of											
(Assume all the necessary data if necessary)											
SECTION A											
C N-			66								
S. No.		Marks	CO								
Q 1	Write short notes on following:		CO1								
	i. Stress invariantsii. Reciprocal Theorem	5*4=20	CO2								
	iii. Homogeneous deformations	3 4-20	CO3								
	iv. Spherical & Deviator stress tensor		CO4								
	SECTION B	11									
0.2	Pastengular strong components at a point in a 2D strong system are as follows:										
Q 2	Rectangular stress components at a point in a 3D stress system are as follows:	10.10	CO1								
	$\sigma_x = 20 \text{ N/mm}^2$, $\sigma_y = -40 \text{ N/mm}^2$, $\sigma_z = 80 \text{ N/mm}^2$, $\tau_{xy} = 40 \text{ N/mm}^2$, $\tau_{xy} = -60 \text{ N/mm}^2$,	10+10 CO2									
	τ_{xy} = 20 N/mm ² ; Determine Principal stresses at a given point.										
Q 3	The displacement field components at a point are given by $0.001 + 2 + 0.001 + 2 + 0.0015$										
	$u = -0.0001y^2 + 0.0015xyz,$ $v = 0.0002x^2y + 0.0003x^2z,$										
	$w = 0.0015xyz + 0.0002x^2yz$	6+8+6	CO1								
	i. Determine the strain tensor at a point (2, -3, -1)	0.0.0	CO2								
	ii. Find the principal strains and their orientation										
	iii. If E=210 GPa and $v=0.28$, find Lame's constants										
	SECTION-C										
		1 1									
Q 4	Derive the expression of an infinite beam resting on elastic foundation for BM, SF,		001								
	deflection and rotation if it is subjected to i. Point load and	10+10	CO1 CO2								
	i. UDL		02								
Q 5	The stresses in a rotating disk (of unit thickness) can be regarded as due to	20	CO2								
	centrifugal force as body force in a stationary disk. Show that this body force is		CO3								
	derivable from the potential $v = -1/2 \delta \omega^2 (x^2 + y^2)$, where δ is the density and ω the										
	angular velocity of rotation (about the origin).										
	A two cell tube as shown in figure is subjected to a torque of 10 kNm. Determine the										

CONFIDENTIAL

Н

Name of Examination (Please tick, symbol is given)	:	MID			END	ы	SUPPLE			
Name of the School (Please tick, symbol is given)	:	SOE	н		SOCS		SOP			
Programme		M.Tech. Structural Engineering								
Semester		I	I							
Name of the Course		Theory of Elasticity & plasticity								
Course Code		CIVL 70	CIVL 7002							
Name of Question Paper Setter		Susanta Kumar Sethy								
Employee Code		40001073								
Mobile & Extension : 7830323		3739/	739/1221							
Note: Please mention additional Stationery to be provided, during examination such as Table/Graph Sheet etc. else mention "NOT APPLICABLE":										
FOR SRE DEPARTMENT										
Date of Examination			:							
Time of Examination		:								
No. of Copies (for Print)		:								

Note: - Pl. start your question paper from next page

Model Question Paper (Blank) is on next page

Name:

Enrolment No:

	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018		
Progra Course Course	: I : 03 hrs : 100		
Instructi	me all the necessary data if necessary) (Internal Choice is there in Q 3-Section B &	k Q 5- Sect	ion C)
	SECTION A		
S. No.		Marks	CO
Q 1	Explain Plastic Stress strain relation with expressions	10	CO4
Q 2	Explain maximum strain energy and distortion energy theory	10	CO2
	SECTION B		
Q 3	Rectangular stress components at a point in a 3D stress system are as follows: $\sigma_x = 20 \text{ N/mm}^2$, $\sigma_y = -40 \text{ N/mm}^2$, $\sigma_z = 80 \text{ N/mm}^2$, $\tau_{xy} = 20 \text{ N/mm}^2$, $\tau_{xy} = -60 \text{ N/mm}^2$, $\tau_{xy} = 40 \text{ N/mm}^2$; Determine Principal stresses at a given point.	10+10	CO1 CO2
Q 4	Show that $\phi = Ar^2 logr$ is a stress function. Determine the stresses $\sigma_{r,\sigma_{\Theta}}$ and $\tau_{r_{\Theta}}$.	10+10	CO1 CO2
	SECTION-C		
Q 5	The stresses in a rotating disk (of unit thickness) can be regarded as due to centrifugal force as body force in a stationary disk. Show that this body force is derivable from the potential $v = -1/2 \ \delta \omega^2(x^2)$, where δ is the density and ω the angular velocity of rotation (about the origin).	6+8+6	CO2 CO3
Q 6	A semi infinite beam resting on an elastic foundation is hinged at one end and 2 kNm moment applied at this end. If the beam is 100mm wide and 50mm thick, determine the maximum deflection stresses in the beam. $E = 90$ GPa, Poission's ratio = 0.3 and modulus of elastic foundation = 8.4 N/mm ² . OR Derive the expression for shear stress of a bar with elliptical cross section subjected to a torque of "T" and compare the same with hexagon side "a"	20	CO2 CO3