Name: Enrolment No:			
Course Progra Time: Instru carryin	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 System Modeling and Identification (CSAI 7002) Semester: I me: M.Tech (A \& RE - I) hrs. Max. Marks: ons: Attempt all questions from Section \mathbf{A} (each carrying 4 marks); all questions from marks) and all questions from Section C (carrying 20 marks).		each
SECTION A			
S. No.		Marks	CO
Q1	Classify the following partial differential equations $\begin{aligned} & \text { (i) } 3 u_{x x}+u_{x y}-4 u_{y y}+3 u_{x}=0 \\ & \text { (ii) } u_{x x}-6 u_{x y}+9 u_{y y}-17 u_{y}=0 .\end{aligned}$	4	$\mathrm{CO2}$
Q2	Determine the value of y at $x=0.1$ by Picard's method for only one approximation, given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$.	4	CO1
Q3	Define the node and saddle point of a linear autonomous system with examples.	4	$\mathrm{CO3}$
Q4	Determine the nature of the critical point $(0,0)$ of the system $\frac{d x}{d t}=-8 x-7 y, \frac{d y}{d t}=3 x+2 y$ and determine whether or not the critical point is stable.	4	$\mathrm{CO3}$
Q5	A frame \boldsymbol{F} has been moved 10 units along the \boldsymbol{y}-axis and 5 units along the \mathbf{z}-axis of the reference frame. Determine the new location of the frame, where $F=\left[\begin{array}{cccc} 0.527 & -0.574 & 0.628 & 5 \\ 0.369 & 0.819 & 0.439 & 3 \\ -0.766 & 0 & 0.643 & 8 \\ 0 & 0 & 0 & 1 \end{array}\right]$	4	$\mathrm{CO5}$
SECTION B			
Q6	Solve the differential equation $\frac{d^{2} y}{d x^{2}}+y=x, x \in[0,2]$ with the boundary conditions $y(0)=0, \& y(2)=5$ by using Galerkin method.	8	$\mathrm{CO1}$
Q7	According to Newton's law of cooling, the rate at which a substance cools in moving air is proportional to the difference between the temperature of the substance and that of the air. If the temperature of the air is $30^{\circ} \mathrm{C}$ and the substance cools from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 15 minutes. Determine when the temperature will be $40^{\circ} \mathrm{C}$.	8	CO4
Q8	Solve $u_{t}=5 u_{x x}$ with $u(0, t)=0 ; u(5, t)=40$ and $u(x, 0)=\left\{\begin{array}{l}20 x \text { for } 0<x \leq 2 \\ 40 \text { for } 2<x \leq 5\end{array}\right.$ for five time steps having $h=1$ by using Schmidt method.	8	$\mathrm{CO2}$

Q9	A point $p(7,3,1)^{T}$ is attached to a frame $F_{n o a}$ and is subjected to the following transformations. Determine the coordinates of the point relative to the reference frame at the conclusion of transformation. 1. Rotation of 90° about the z-axis, 2. Followed by a rotation of 90° about the \boldsymbol{y}-axis, 3. Followed by a translation of $[4,-3,7]$.	8	$\mathrm{CO5}$
Q10	Determine the value of y for $x=0.1$ and $x=0.2$ for $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ given that $y(0)=1$ by Runge-Kutta method of fourth order.	8	CO1
	OR		
Q10	Determine the value of y for $x=0.2$ and $x=0.4$ for $\frac{d y}{d x}=x+\|\sqrt{y}\|$ given that $y(0)=1$ by Euler's modified method with step size $h=0.2$.	8	CO1
SECTION-C			
Q11(A)	Solve $u_{x x}+u_{y y}=0$, over the square mesh of side four units satisfying the following boundary conditions: (i) $u(0, y)=0$ for $0 \leq y \leq 4$ (ii) $u(4, y)=12+y$ for $0 \leq y \leq 4$ (iii) $u(x, 0)=3 x$ for $0 \leq x \leq 4$ (iv) $u(x, 4)=x^{2}$ for $0 \leq x \leq 4$.	10	$\mathrm{CO2}$
Q11(B)	A point moves in a straight line towards a center of force $\frac{\mu}{(\text { distance })^{3}}$, starting from rest at a distance ' b ' from the center of force. Show that the time of reaching a point distant ' c ' from the center of force is $\frac{b}{\sqrt{\mu}} \sqrt{b^{2}-c^{2}}$ and its velocity then is $\frac{\sqrt{\mu}}{b c} \sqrt{b^{2}-c^{2}}$.	10	CO4
Q12(A)	Determine the nature of the critical point $(0,0)$ of the non-linear autonomous system $\frac{d x}{d t}=-x+2 x^{2}+y^{2}, \frac{d y}{d t}=x y-y$ and also determine the stability of $(0,0)$ by Liapunov's direct method.	10	CO 3
	OR		
Q12(A)	Consider the linear autonomous system $\frac{d x}{d t}=x+y, \frac{d y}{d t}=3 x-y$ (i) Determine the nature of the critical point $(0,0)$ (ii) Determine the general solution of this system, and (iii) Determine the stability of $(0,0)$.	10	CO 3
Q12(B)	For the following frame \boldsymbol{F}, determine the values of the missing elements and	10	$\mathrm{CO5}$

| | complete the matrix representation of the frame $F=\left[\begin{array}{cccc}? & 0 & ? & 5 \\ 0.71 & ? & ? & 3 \\ ? & ? & 0 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$. | | |
| :--- | :--- | :--- | :--- | :--- |
| Q12(B) | A frame \boldsymbol{F} was rotated about the \boldsymbol{x}-axis 90°, then it was translated about the current
 \boldsymbol{a}-axis 3 inches before it was rotated about the \boldsymbol{z}-axis 90°. Finally, it was translated
 about the current \boldsymbol{O}-axis 5 inches, then
 (a) Write an equation that describes the motions, and
 (b) Determine the final location of a point $p(1,5,4)^{T}$ attached to the frame relative
 to the reference frame. | $\mathbf{1 0}$ | $\mathbf{C O 5}$ |

Name: Enrolment No:			
Course Progra Time: Instru carryin	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 System Modeling and Identification (CSAI 7002) Semester: I me: M.Tech (A \& RE - I) hrs. Max. Marks: ons: Attempt all questions from Section \mathbf{A} (each carrying 4 marks); all questions from marks) and all questions from Section C (carrying 20 marks).	2018-201 100 ection B	each
SECTION A			
S. No.		Marks	CO
Q1	Classify the following partial differential equations $\begin{aligned} & \text { (i) } u_{x x}-u_{x y}-4 u_{y y}+3 u_{y}=0 \\ & \text { (ii) } u_{x x}+6 u_{x y}-u_{y y}-17 u_{x}=0 .\end{aligned}$	4	CO2
Q2	Determine the value of y at $x=0.1$ by Picard's method for only one approximation, given that $\frac{d y}{d x}=\frac{2 y-x}{y+x}, y(0)=1$.	4	CO1
Q3	Define center and spiral critical points of a linear autonomous system with examples.	4	CO3
Q4	Determine the nature of the critical point $(0,0)$ of the system $\frac{d x}{d t}=x+y, \frac{d y}{d t}=x-2 y$ and determine whether or not the critical point is stable.	4	CO3
Q5	A frame \boldsymbol{F} has been moved 5 units along the z -axis and 10 units along the \mathbf{x}-axis of the reference frame. Determine the new location of the frame, where $F=\left[\begin{array}{cccc} 0.7 & -0.7 & 0.5 & 10 \\ 0.3 & 0.2 & 0.4 & 2 \\ -0.7 & 0 & 0.6 & 4 \\ 0 & 0 & 0 & 1 \end{array}\right]$	4	CO5
SECTION B			
Q6	Solve the differential equation $\frac{d^{2} y}{d x^{2}}-2 y=x, x \in[0,1]$ with the boundary conditions $y(0)=0, \& y(1)=1$ by using method of least square.	8	CO1
Q7	A boat is rowed with a velocity \boldsymbol{u} across a stream of width \boldsymbol{d}. If the velocity of the current is directly proportional to the product of the distances from the two banks, determine the equation of the path of the boat and the distance down the stream to the point, where it lands.	8	CO4
Q8	Solve $u_{t}=u_{x x}$ subject to the conditions $u(x, 0)=0 ; u(0, t)=0$ and $u(1, t)=10 t$. Evaluate u for $t=\frac{1}{8}$ in two steps, using Crank- Nicholson's scheme.	8	CO2
Q9	A point $p(4,2,1)^{T}$ is attached to a frame $F_{\text {noa }}$ and is subjected to the following	8	$\mathrm{CO5}$

	transformations. Determine the coordinates of the point relative to the reference frame at the conclusion of transformation. 1. Rotation of 90° about the \boldsymbol{y}-axis, 2. Followed by a translation of $[4,-3,7]$, and 3. Followed by a rotation of 90° about the z-axis.		
Q10	Determine the value of y for $x=0.1$ and $x=0.2$ for $\frac{d y}{d x}=\frac{y^{2}+x}{y^{2}+2 x}$ given that $y(0)=1$ by Runge-Kutta method of fourth order.	8	CO1
	OR		
Q10	Determine the value of y for $x=0.2$ and $x=0.4$ for $\frac{d y}{d x}=x y$ given that $y(0)=1$ by Euler's modified method with step size $h=0.2$.	8	CO1
SECTION-C			
Q11(A)	Solve $u_{t t}=4 u_{x x}$ upto $t=0.5$ with spacing $h=1$ given that $u(x, 0)=x(4-x)$, $u(0, t)=0=u(4, t) ; u_{t}(x, 0)=0$.	10	CO2
Q11(B)	A particle is performing a simple harmonic motion of period \boldsymbol{T} about a center O and it passes through a point P, where $O P=b$ with velocity \boldsymbol{v} in the direction $O P$. Prove that the time which elapses before it returns to P is $\frac{T}{\pi} \tan ^{-1}\left(\frac{\nu T}{2 \pi b}\right)$.	10	CO4
Q12(A)	Determine the nature of the critical point $(0,0)$ of the non-linear autonomous system $\frac{d x}{d t}=x-x^{2}+4 y, \frac{d y}{d t}=6 x-y+2 x y$ and also determine the stability of $(0,0)$ by Liapunov's direct method.	10	CO 3
	OR		
Q12(A)	Consider the linear autonomous system $\frac{d x}{d t}=x+3 y, \frac{d y}{d t}=3 x+y$ (i) Determine the nature of the critical point $(0,0)$ (ii) Determine the general solution of this system, and (iii) Determine the stability of $(0,0)$.	10	CO3
Q12(B)	For the following frame \boldsymbol{F}, determine the values of the missing elements and complete the matrix representation of the frame $F=\left[\begin{array}{cccc}? & 0 & ? & 3 \\ 0.5 & ? & ? & 9 \\ 0 & ? & ? & 7 \\ 0 & 0 & 0 & 1\end{array}\right]$.	10	CO5
	OR		
Q12(B)	A frame \boldsymbol{F} was rotated about the \boldsymbol{y}-axis 90°, followed by a rotation about the \boldsymbol{o}-axis 30°, followed by a translation of 5 units along the \boldsymbol{n}-axis, and finally, a translation of	10	CO5

	4 units along the \boldsymbol{x}-axis 90°, then (a) Write an equation that describes the motions. (b) Determine the total transformation matrix. (c) Determine the final location of a point $p(1,1,1)^{T}$ attached to the frame relative to the reference frame.		

