LI UPES **Enrolment No:** UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2018** Course: System Modeling and Identification (CSAI 7002) Semester: I (2018-2019) Programme: M.Tech (A & RE - I) Time: 03 hrs. Max. Marks: 100 Instructions: Attempt all questions from Section A (each carrying 4 marks); all questions from Section B (each carrying 8 marks) and all questions from Section C (carrying 20 marks). SECTION A S. No. Marks CO (i) $3 u_{yy} + u_{yy} - 4 u_{yy} + 3 u_{y} = 0$ **Q1** Classify the following partial differential equations 4 **CO2** $(ii) u_{xx} - 6u_{xy} + 9u_{yy} - 17u_y = 0.$ Determine the value of y at x = 0.1 by Picard's method for only one approximation, **Q2** given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1. 4 **CO1** Define the node and saddle point of a linear autonomous system with examples. Q3 4 **CO3** nature of the critical point (0,0)**O4** Determine the of the system 4 **CO3** $\frac{dx}{dt} = -8x - 7y$, $\frac{dy}{dt} = 3x + 2y$ and determine whether or not the critical point is stable. A frame \overline{F} has been moved 10 units along the y-axis and 5 units along the z-axis of Q5 the reference frame. Determine the new location of the frame, where -0.574 0.628 5 0.527 0.369 0.819 0.439 3 -0.766 0 0.643 8 4 **CO5** F =-0.766 0 0 0 1 **SECTION B** Q6 Solve the differential equation $\frac{d^2y}{dx^2} + y = x$, $x \in [0,2]$ with the boundary conditions 8 **CO1** y(0) = 0, & y(2) = 5 by using Galerkin method. According to Newton's law of cooling, the rate at which a substance cools in moving **Q7** air is proportional to the difference between the temperature of the substance and that 8 **CO4** of the air. If the temperature of the air is $30^{\circ}C$ and the substance cools from $100^{\circ}C$ to $70^{\circ}C$ in 15 minutes. Determine when the temperature will be $40^{\circ}C$. Solve $u_t = 5 u_{xx}$ with u(0,t) = 0; u(5,t) = 40 and $u(x,0) = \begin{cases} 20x & for \ 0 < x \le 2\\ 40 & for \ 2 < x \le 5 \end{cases}$ **Q8** for 8 **CO2** five time steps having h=1 by using Schmidt method.

Name:

Q9	 A point p(7,3,1)^T is attached to a frame F_{noa} and is subjected to the following transformations. Determine the coordinates of the point relative to the reference frame at the conclusion of transformation. 1. Rotation of 90° about the <i>z</i>-axis, 2. Followed by a rotation of 90° about the <i>y</i>-axis, 3. Followed by a translation of [4,-3,7]. 	8	CO5
Q10	Determine the value of y for $x = 0.1$ and $x = 0.2$ for $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given that $y(0) = 1$ by Runge-Kutta method of fourth order.	8	CO1
	OR		
Q10	Determine the value of y for $x = 0.2$ and $x = 0.4$ for $\frac{dy}{dx} = x + \left \sqrt{y}\right $ given that $y(0) = 1$ by Euler's modified method with step size $h = 0.2$.	8	CO1
	SECTION-C		
Q11(A)	Solve $u_{xx} + u_{yy} = 0$, over the square mesh of side four units satisfying the following boundary conditions: (i) $u(0, y) = 0$ for $0 \le y \le 4$ (ii) $u(4, y) = 12 + y$ for $0 \le y \le 4$ (iii) $u(x, 0) = 3x$ for $0 \le x \le 4$ (iv) $u(x, 4) = x^2$ for $0 \le x \le 4$.	10	CO2
Q11(B)	A point moves in a straight line towards a center of force $\frac{\mu}{(\text{distance})^3}$, starting from rest at a distance 'b' from the center of force. Show that the time of reaching a point distant 'c' from the center of force is $\frac{b}{\sqrt{\mu}}\sqrt{b^2-c^2}$ and its velocity then is $\frac{\sqrt{\mu}}{bc}\sqrt{b^2-c^2}$.	10	CO4
Q12(A)	Determine the nature of the critical point (0,0) of the non-linear autonomous system $\frac{dx}{dt} = -x + 2x^2 + y^2, \frac{dy}{dt} = xy - y \text{ and also determine the stability of (0,0) by}$ Liapunov's direct method.	10	соз
	OR		
Q12(A)	Consider the linear autonomous system $\frac{dx}{dt} = x + y$, $\frac{dy}{dt} = 3x - y$ (i) Determine the nature of the critical point (0,0) (ii) Determine the general solution of this system, and (iii) Determine the stability of (0,0).	10	CO3
Q12(B)	For the following frame F , determine the values of the missing elements and	10	CO5

	complete the matrix representation of the frame $F = \begin{bmatrix} ? & 0 & ? & 5 \\ 0.71 & ? & ? & 3 \\ ? & ? & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.		
	OR		
Q12(B)	 A frame F was rotated about the x-axis 90°, then it was translated about the current a-axis 3 inches before it was rotated about the z-axis 90°. Finally, it was translated about the current o-axis 5 inches, then (a) Write an equation that describes the motions, and (b) Determine the final location of a point p(1,5,4)^T attached to the frame relative to the reference frame. 	10	CO5

Enrolment No: UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2018 Course:** System Modeling and Identification (CSAI 7002) Semester: I (2018-2019) Programme: M.Tech (A & RE - I) Time: 03 hrs. Max. Marks: 100 Instructions: Attempt all questions from Section A (each carrying 4 marks); all questions from Section B (each carrying 8 marks) and all questions from Section C (carrying 20 marks). SECTION A S. No. Marks CO (*i*) $u_{yy} - u_{yy} - 4u_{yy} + 3u_{y} = 0$ **Q1** Classify the following partial differential equations 4 **CO2** $(ii) u_{xx} + 6u_{xy} - u_{yy} - 17u_x = 0.$ Determine the value of y at x = 0.1 by Picard's method for only one approximation, **Q2** given that $\frac{dy}{dx} = \frac{2y - x}{y + x}$, y(0) = 1. Define center and spiral critical points of a linear autonomous system with examples. 4 **CO1** Q3 4 **CO3 O4** Determine the nature of the critical point (0,0) of the system $\frac{dx}{dt} = x + y$, $\frac{dy}{dt} = x - 2y$ 4 **CO3** and determine whether or not the critical point is stable. A frame F has been moved 5 units along the z-axis and 10 units along the x-axis of Q5 the reference frame. Determine the new location of the frame, where 0.7 -0.7 0.5 10 $F = \begin{vmatrix} 0.3 & 0.2 & 0.4 & 2 \\ -0.7 & 0 & 0.6 & 4 \end{vmatrix}$ 4 **CO5** 0 0 1 0 **SECTION B** Solve the differential equation $\frac{d^2y}{dx^2} - 2y = x$, $x \in [0,1]$ with the boundary conditions **Q6** 8 **CO1** y(0) = 0, & y(1) = 1 by using method of least square. A boat is rowed with a velocity *u* across a stream of width *d*. If the velocity of the 07 current is directly proportional to the product of the distances from the two banks, 8 **CO4** determine the equation of the path of the boat and the distance down the stream to the point, where it lands. Solve $u_t = u_{xx}$ subject to the conditions u(x,0) = 0; u(0,t) = 0 and u(1,t) = 10t. 08 8 **CO2** Evaluate *u* for $t = \frac{1}{8}$ in two steps, using Crank- Nicholson's scheme. A point $p(4,2,1)^T$ is attached to a frame F_{noa} and is subjected to the following **Q9** 8 **CO5**

Name:

	OR		
			1
	complete the matrix representation of the frame $F = \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0.5 & ? & ? & 9 \\ 0 & ? & ? & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.	10	CO5
Q12(B)	For the following frame F , determine the values of the missing elements and $\begin{bmatrix} 2 & 0 & 2 & 3 \end{bmatrix}$		
	(i) Determine the general solution of this system, and(ii) Determine the stability of (0,0).	20	
Q12(A)	Consider the linear autonomous system $\frac{dx}{dt} = x + 3y$, $\frac{dy}{dt} = 3x + y$ (i) Determine the nature of the critical point (0,0)	10	CO3
	OR		
	Liapunov's direct method.		
Q12(A)	Determine the nature of the critical point (0,0) of the non-linear autonomous system $\frac{dx}{dt} = x - x^2 + 4y, \frac{dy}{dt} = 6x - y + 2xy \text{ and also determine the stability of (0,0) by}$	10	CO
	it passes through a point <i>P</i> , where $OP = b$ with velocity <i>v</i> in the direction <i>OP</i> . Prove that the time which elapses before it returns to <i>P</i> is $\frac{T}{\pi} \tan^{-1} \left(\frac{vT}{2\pi b} \right)$.	10	CO4
Q11(A) Q11(B)	Solve $u_{tt} = 4 u_{xx}$ upto $t = 0.5$ with spacing $h = 1$ given that $u(x, 0) = x(4 - x)$, $u(0, t) = 0 = u(4, t); u_t(x, 0) = 0.$ A particle is performing a simple harmonic motion of period T about a center <i>O</i> and	10	CO2
011(4)	SECTION-C		
	Euler's modified method with step size $h = 0.2$.	o	
Q10	Determine the value of y for $x = 0.2$ and $x = 0.4$ for $\frac{dy}{dx} = xy$ given that $y(0) = 1$ by	8	CO1
	OR		
	Determine the value of y for $x = 0.1$ and $x = 0.2$ for $\frac{dy}{dx} = \frac{y^2 + x}{y^2 + 2x}$ given that $y(0) = 1$ by Runge-Kutta method of fourth order.	8	COI
Q10	 Rotation of 90° about the <i>y</i>-axis, Followed by a translation of [4,-3,7], and Followed by a rotation of 90° about the <i>z</i>-axis 		
	transformations. Determine the coordinates of the point relative to the reference frame at the conclusion of transformation.		

4 units along the x -axis 90°, then	
(a) Write an equation that describes the motions.	
(b) Determine the total transformation matrix.	
(c) Determine the final location of a point $p(1,1,1)^T$ attached to the frame relative	
to the reference frame.	