Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

	End Semester Examination, Detember 2010				
Programme Name: M.Tech REE Semester					
Cour	Course Name : Solar Photovoltaic Technologies Time		: 03 hrs		
Cour	rse Code : EPEC-7024 Max. Ma	rks : 100			
Nos.	of page(s) : 4				
	SECTION A				
S.		Marks	COs		
No.		WIATKS			
Q 1	Q 1 Find the day of the year on which the sun is directly overhead at 12:00h (AST) at Pune $(18.53^{\circ}N)$				
Q.2 Discuss the advantages and disadvantages of thin film solar cells when compared with single crystalline solar cells.			CO2		
Q.3	Write the brief note on Staekler-Wronski effect.	4	CO2		
Q.4	On a sketch of an IV and power curve, indicate open circuit voltage, short circuit current				

	SECTION B					
	systems?	7	04			
Q.5	What is a grid-connected PV system? What are single-stage and multistage grid connected	1	CO4			
	open circuit voltage and short circuit current.					
	and maximum power point for a typical c-Si solar cell including typical magnitude for	4	CO3			
Q.4	On a sketch of an IV and power curve, indicate open chedit voltage, short chedit current					

Q.6	Name the instruments for measuring the solar radiations. With the help of neat diagram, detailed the construction and measuring principle of pyranometers.	8	CO1
Q.7	(i) List and explain the different type of optical losses within a solar cell. Your answer	4	
	should include how these losses can be minimized.	4	CO2
	(ii) Discuss the roll of TCO layer in the thin film solar cells. List different type of materials	4	
	used as a TCO.		
Q.8	Describe the process steps involved in the manufacturing of monocrystalline (CZ process)	8	CO2
	silicon wafers.	U	
Q.9	Starting with the solar cell equation, derives the expression for open circuit voltage (V_{OC}).	8	CO2
	What factors determine the order of magnitude of V_{OC} ?		
	OR		
	When the cell temperature is 300K, a certain silicon cell of area 100 cm ² has an open		
	circuit voltage of 600 mV and a short circuit current of 3.3A under 1kW/m ² illumination.		
	Assuming that the cell behaves ideally, what is its energy conversion efficiency at the		

	maximum power point.						
	What would be its corresponding efficiency if the cell had a series resistance of 0.1 Ω and a shunt resistance of 3 Ω ?						
Q.10	large photovoltaic array. (ii) Explain the steps that can be taken to prevent damage arising from such 'hot spots'.					8	CO3
			SE	CTION-C			
Q.11	(i) Define the following terms related to the lead acid batteries(a) State of charge (b) Depth of discharge (c) Self-discharge (d) Stratification.					8	
	(ii) A PV system is required to produce 96 W at 12 V. Design the PV panel, working at the maximum power point, if each cell is 80 cm ² in area and having the following specification. Sketch the neat diagram of the designed array.						
	Type of Cell	Cell Temperature In ⁰ K	$I_{SC} (A/m^2)$	$\begin{array}{c c} Dark & Saturation \\ Current & Density & I_o \\ (A/m^2) & \end{array}$	Thermal Voltage V_T	12	CO3
	C-Si	300	250	1.7e-08	.026Volt		
Q.12	 (i) Give the basic flow chart for implementing the perturb and observe (P & O) approach. Discuss the basic schemes of MPPT controller for implementing the P & O algorithm. OR Using the simple design method, design a PV system using 60 W, 12 V panels and 145 Ah, 6 V batteries. The PV system is required to offer 3 days of autonomy, the battery efficiency is 75%, and the depth of discharge is 70%. The location where the system is located has 6 P. h of daylight during wintertime and the application is 24 V with a load of 1500 Wh. 					10	
	 (ii) Define total harmonic distortion in relation with inverter. What should be the value of THD of an ideal sine wave inverter? Draw the block diagram of shunt and series type controllers. How can a DC to DC converter be used in a charge controller? 						CO4
	Design a PV water pumping system (DC), which is required to draw 25,000 lit of water every day from the depth of 10m. The Data required for calculations is as follows: Total vertical lift = 12 m (5 m-elevation, 5m-standing water level, 2 m- drawdown) Water density = 1000 kg/m ³ , Solar PV module used = 75 W _P (with operating factor 0.75) Sun peak hours =6 /day, Pump efficiency= 30%, Mismatch factor = 0.85. The MPPT circuit is not used.				10		

Appendix-I

Table:	Recommended Ave	erage Days for Months	as and Values of n by Months	

	<i>n</i> for <i>i</i> th	For Average Day of Month		
Month	Day of Month	Date	n	
January	i	17	17	
February	31 + i	16	47	
March	59 + i	16	75	
April	90 + i	15	105	
May	120 + i	15	135	
June	151 + i	11	162	
July	181 + i	17	198	
August	212 + i	16	228	
September	243 + i	15	258	
October	273 + i	15	288	
November	304 + i	14	318	
December	334 + i	10	344	

Useful Models and Equations

1. Estimation models for diffuse component of hourly and monthly radiations.

For $\omega_s \leq 81.4^{\circ}$

$$\frac{H_d}{H} = \begin{cases} 1.0 - 0.2727K_T + 2.4495K_T^2 - 11.9514K_T^3 + 9.3879K_T^4 & \text{for } K_T < 0.715\\ 0.143 & \text{for } K_T \ge 0.715 \end{cases}$$

1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

and for $\omega_s > 81.4^{\circ}$

$$\frac{H_d}{H} = \begin{cases} 1.0 + 0.2832K_T - 2.5557K_T^2 + 0.8448K_T^3 & \text{for } K_T < 0.722\\ 0.175 & \text{for } K_T \ge 0.722 \end{cases}$$

$$\frac{I_d}{I} = \begin{cases} 1.0 - 0.09k_T & \text{for } k_T \le 0.22 \\ 0.9511 - 0.1604k_T + 4.388k_T^2 & \text{for } 0.22 < k_T \le 0.80 \\ -16.638k_T^3 + 12.336k_T^4 & \text{for } 0.22 < k_T \le 0.80 \\ 0.165 & \text{for } k_T > 0.8 \end{cases}$$

2. Monthly average Extraterrestrial Solar Radiation

$$H_0 = \frac{24 \times 3600 \text{ G}_{sc}}{\pi} \left(1 + 0.033 \cos \frac{360n}{365} \right) \times \left[\cos \emptyset \, \cos \delta \sin \omega_s + \frac{\pi \, \omega_s}{180} \, \sin \emptyset \, \sin \delta \right]$$

$$I_0 = \frac{12 \times 3600 \text{ G}_{sc}}{\pi} \left(1 + 0.033 \cos \frac{360n}{365} \right) \times \left[\cos \emptyset \cos \delta \left(\sin \omega_2 - \sin \omega_1 \right) + \frac{\pi(\omega_2 - \omega_1)}{180} \sin \emptyset \sin \delta \right]$$

3. Declination $\delta = 23.45 \sin \left[\frac{360}{365} (284 + n) \right]$

- 4. Sun rise hour angle for tilted surfaces $\cos^{-1}[-\tan(\varpi \beta)\tan\delta]$ in Northern Sphere
- 5. Solar Constant $G_{sc} = 1367 \text{ W/m}^2$
- 6. Isotropic Model to estimate the total Insolation on tilted surface

$$I_T = I_b R_b + I_d \left(\frac{1 + \cos\beta}{2}\right) + I \rho_g \left(\frac{1 - \cos\beta}{2}\right)$$

7. Sun set/sun rise hour angle $\omega_s = \cos^{-1}(-\tan \varnothing \tan \delta)$

8. Angle of incidence on inclined surface

 $\cos \theta = \sin \delta \sin \phi \cos \beta - \sin \delta \cos \phi \sin \beta \cos \gamma$ $+ \cos \delta \cos \phi \cos \beta \cos \omega + \cos \delta \sin \phi \sin \beta \cos \gamma \cos \omega$ $+ \cos \delta \sin \beta \sin \gamma \sin \omega$