


Name:	Name: Enrolment No:						
Enrolment No:							
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
	End Semester Examination, December 2018						
Course: Finite Element Method for Fluid Dynamics							
Course							
Programme: M.Tech CFD							
Time: 0.		: 100					
Instruct	ions: All questions are compulsory.						
	SECTION A						
S. No.		Marks	CO				
Q 1	Explain the steps involved in solving a structural problem numerically.	4	CO1				
Q 2	Explain following terms:						
	i. Nodes						
	ii. Elements	4	CO1				
	iii. Domain						
	iv. Shape Function						
Q 3	Explain the process of obtaining global stiffness matrix from the superimposition of	4	CO1				
Q 4	element stiffness matrices with suitable example. Determine the Cartesian coordinate of the point P (ξ = 0.8, η = 0.9) as shown in						
Q 4	figure below:						
	3(3.5,4.0)						
	η						
	$P(\xi,\eta)$ 4(1.5,2.5)	4	CO2				
	ξY						
	2(3.0,1.5)						
	1(1.0,1.0)						
	► X						
Q 5	Emphasis on various tools available in FEM software for post processing.	4	CO5				
SECTION B							
Q 6	A two element two nodded bar is shown in figure given below. Determine the nodal	10	CO1				
	displacement and nodal reaction forces. The bar is made up of steel.						

Name: Enrolmo	Name: Enrolment No:				
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
Course	End Semester Examination, December 2018 Finite Element Method for Fluid Dynamics				
Course Code: ASEG 7022 Semester: I Programme: M.Tech CFD					
Time: 03 hrs. Max. Marks: Instructions: All questions are compulsory.					
	SECTION A				
S. No.		Marks	CO		
Q 1	Write down the advantages, disadvantages and applications of finite element method.	4	CO1		
Q 2	Define boundary conditions and its type.	4	CO1		
Q 3	Define isoparametric, subparametric and superparametric elements.	4	CO2		
Q 4	Define global and local co-ordinate systems. Explain the necessity of local co-ordinate system.	4	CO2		
Q 5	Emphasis on various tools available in FEM software for post processing.	4	CO5		
	SECTION B				
Q 6	Determine the nodal displacements and the reaction forces for the bar shown in figure. An axial load $P = 200$ KN is applied as shown.	10	CO1		

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	OR		
	Derive weighted residual and principle of virtual work formulations.		
Q 7	Derive the strain displacement relationship matrix for Constant Strain Triangle.	10	CO3
Q 8	Illustrate finite element formulation of Plane bending analysis problem.	10	CO3
Q 9	Emphasis on the significance of adaptive grid.	10	CO5
	SECTION C Calculate the Jacobian matrix and the strain displacement matrix for four node	20	CO2
Q 10	two dimensional quadrilateral elements corresponding to the point (ξ =0.57735, η = 0.57735) as shown in fig, below 3(3.5,4.0) $4(1.5,2.5)$ Y $4(1.5,2.5)$ Y $1(1.0,1.0)$ $Z(3.0,1.5)$ QR Analyze the truss shown below by finite element method. Assume the cross sectional area of the inclined member as 1.5 times the area (A) of the horizontal and vertical members. Assume modulus of elasticity is constant for all the members and is E.		

