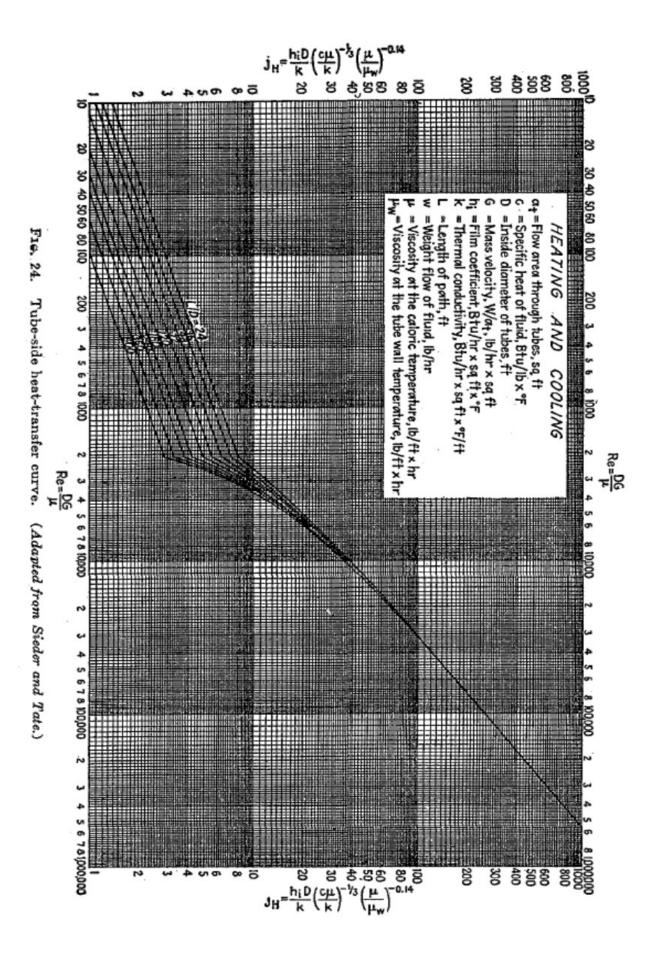
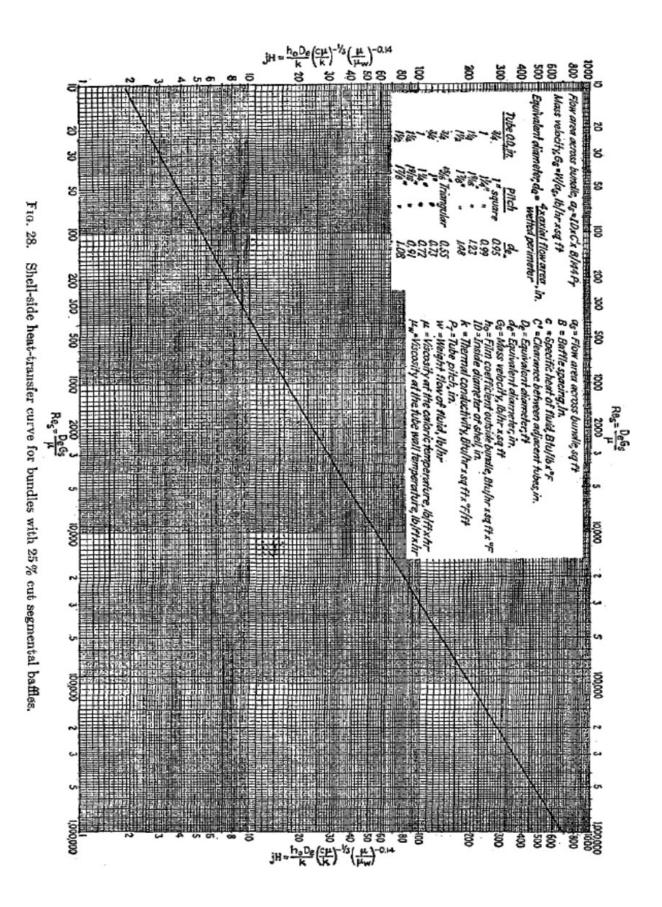
Name:

Enrolment No:

UPES


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018


Program/Course: M.Tech (CE + PD) Subject- Fluid Flow and Heat Transfer Equipment Design Code: CHPD 7005 Semester: I Time: 03hrs Max. Marks: 100

Instructions: *The question paper consists of two sections. Answer the questions section wise in the answer booklet. Note: Assume suitable data wherever necessary

		Attempt all th	SECTION A e questions. All question Total Marks=60	s carry equal marks		
S. No.					Marks	CO
Q 1	A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm used to measure the flow of oil of specific gravity 0.8. The discharge of oil through venturimeter is 60 litres/s. Find the reading of the oil-mercury differential manometer. Take C_d =0.98 and specific gravity of mercury 13.6.					CO1
Q2	Derive general unsteady state heat conduction equation in Cartesian Co-ordinates.					CO2
Q3	Explain Grand Composite Curve.					CO4
Q4	Strea m 1 2 3 4 A minimu the proble (a) Th	em table for the network he minimum hot and co	Target temperature, TT (°C) 150 60 190 210 ace of 10°C will be used and use it to determine Id utility requirements	Heat capacity flow rate, CP (kW/°C) 2.0 3.0 2.5 4.0 d for design purposes. See:	10 t up	CO4
Q5	(b) The hot and cold stream temperatures at the pinchExplain basic construction of furnace and its applications.				10	CO5

Q6	A chemical is heated by w exchanger with an inlet te of chemical is 3 kg/s and given to be 4.18 and 1.8 k 1.2 kW/m ² °C. Heat transfe fluids. Assume it's a parall	e e t 10	CO3		
		SECTION-B (Tota Answer all que	· · · · · · · · · · · · · · · · · · ·		
Q7	cylindrical cavity of radius	R as seen in the figure. the fluid moves through Cylinder of insideradius RLbution in the narrow and	e		CO1
Q8	In a 1-6 shell and tube heat to 120°F by cooling a gase of 352.13 m ² K/W, and transfer coefficient and h	t exchanger, 17 kg/sec o bline stream from 160 to for cold fluid of 176.0 eat load. Tube inner tube length of 7.315 m <i>Gasoline</i> 0.0002 kg/(m s) 685 kg/m ³ 0.129 W/(m K) 2.39 kJ/(kg K)	of kerosene will be heated from 7. 120°F. Fouling factor of hot fluid 6 m ² K/W. Find individual heat diameter of 0.212 m, tube oute Thermal Conductivity of tube i Kerosine 0.0016 kg/(m s) 800 kg/m ³ 0.144 W/(m K) 2.01 kJ/(kg K)	d dt rr s 20	CO3

