Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End term Examination – December 2018

Program: B.Tech APE (Gas)

Course: City Gas Distribution and Pipeline Network Analysis

Time: 03 hrs.

Code: PTEG 442 Max Marks :100

SECTION A (20)				
1	 i) What are PNG over LPG? ii) What are challenges in CGD? iii) Explain in detail meters used in residential, commercial and industrial 	05 05 10	CO2 CO2 CO3	
	sectors.			
	SECTION B (40 Marks)			
2	Explain application of natural gas electricity generation in detail	10	CO1	
3	A gas pipeline, NPS 20 with 0.500 in. wall thickness, transports natural gas (specific gravity = 0.6) at a flow rate of 250 MMSCFD at an inlet temperature of 60°F. inlet pressure is 1000 psig and the outlet pressure is 850 psig. The base pressure and base temperature are 14.7 psia and 60°F, respectively. Assume compressibility factor $Z = 0.90$? Assuming isothermal flow calculate the velocity of gas at the inlet, outlet velocity & Erosional Velocity.	10	CO4	
4	An existing 150mm supplies gas from A to B a distance 1200m. It is proposed to double the demand at B & reinforce the existing pipe with parallel pipe so that original pressure remains constant. Calculate length of reinforcement for 120mm, 140mm 180mm.	10	CO4	
	If size of pipe in above example is further increased to 200mm and 220 what will be the effect on length of reinforcement and discuss your results.	10	CO4	

i) What are EHS issues in CGD projects? As a safety Engineer in CGD company	15	CO5
give some suggestions to overcome these issues		
ii)Explain ultrasonic meter .	05	CO ₃
	05	CO2
i)What are advantages of PE pipelines in CGD?		
ii)What are assumptions made for derivation of General Flow Equation Derive General flow equation; Derive medium and low pressure equation	15	CO2
Calculate flow rate in each pipe by using Hardy Cross Method. Use maximum three iterations.	20	CO4
100 K=1 50		