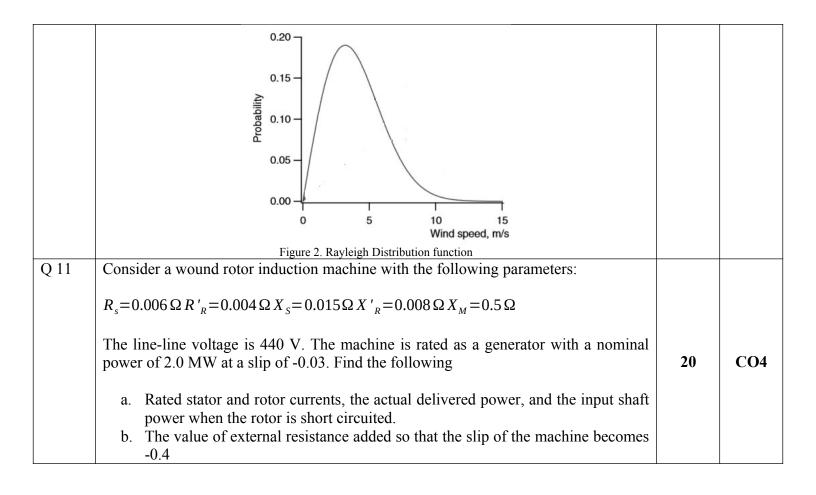
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Programme Name: M. Tech REE


Course Name: Wind Energy TechnologyCourse Code: EPEC 8008Nos. of page(s): 3Instructions: All questions are mandatory.

Semester : III Time : 03 hrs Max. Marks : 100

SECTION A

S. No.		Marks	CO
Q 1	Compare horizontal axis and vertical axis wind turbine.	4	CO1
Q 2	Draw the phasor diagram representing F_L , F_D , v, u, w if the angle between the chord and wind speed is 45 degrees.	4	CO2
Q 3	A 1.5 MW direct drive variable speed Wind Power Plant rated at 10.8 m/s wind speed has a rotor diameter of 52 m with a blade length of 25m and a speed range of 20 RPM to 30 RPM. Find the range of its tip speed ratio.	4	CO3
Q 4	Explain the blade design procedure applicable for standalone system.	4	CO4
Q 5	Explain the term Levelized cost of electricity (LCOE).	4	CO5
	SECTION B		
Q 6	A horizontal-axis wind turbine rotates at 80 rpm and the wind speed through the blade is 6 m/s. For a pitch angle of 5 degree (uniform throughout the blade), plot a graph showing the variation of the angle of incidence i with the radial distance along a blade.	10	CO2
Q 7	A wind turbine rated at 100kW has a rated wind speed of 11 m/s, a cut-in speed of 4.5 m/s, and a furling speed of 22 m/s. The wind speed frequency distribution over a year is given by a Weibull distribution having the shape parameter as 5 and scale parameter as 7 m/s. Determine the capacity factor and the yearly energy production. Hint: $f(v) = (\frac{k}{c})v/c^{k-1}e^{-(\frac{v}{c})^k}$	10	CO3
Q 8	a. Discuss the necessary conditions/constraints to be considered while designing a wind-solar hybrid system for any given site.b. Explain the off-shore wind energy scenario of India.	5+5	CO4

Q 9	The basic information about the Danish w	vind farm:		
	Wind farm capacity (MW)	50		
	Capital Investment (€)	7000000		
	Period of operation (years)	25		
	Decommissioning cost (€)	3000000		
	O & M costs (€/kWh)	0.0091		
	Capacity factor	0.25		
	Electricity selling price, tariff (€/kWh)	0.08	10	CO5
	Annual discount rate (%)	8	10	000
	Inflation rate (%)	3		
	Use the above information given and find i. AEP ii. O & M cost in euro for each year iii. Annual revenue from selling the e	(€/year)		
	e	sectiony (e/year)		
	iv. Annual net income (€/year)v. NPV of the wind farm			
		DECEMON C		
		SECTION-C		
Q 10	215 (shown below in figure 1) to extract 1	ng BEM theory for the Aerofoil NACA 63- 1 MW of electrical power from a particular leigh distribution (shown below in figure 2) <i>mention the same</i> .	20	CO2
	C∟ vs i			
		0.14 C _D Vs i		
	0.50 -	0.10		
	-0.50	0.06		
	-1.00	0.02		
	-1.50 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20	0.00 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.(
		NACA (2.215		
	Figure 1	. NACA 63-215		l

Name:

Enrolment No:

UPES

Semester

Max. Marks: 100

Time

: III

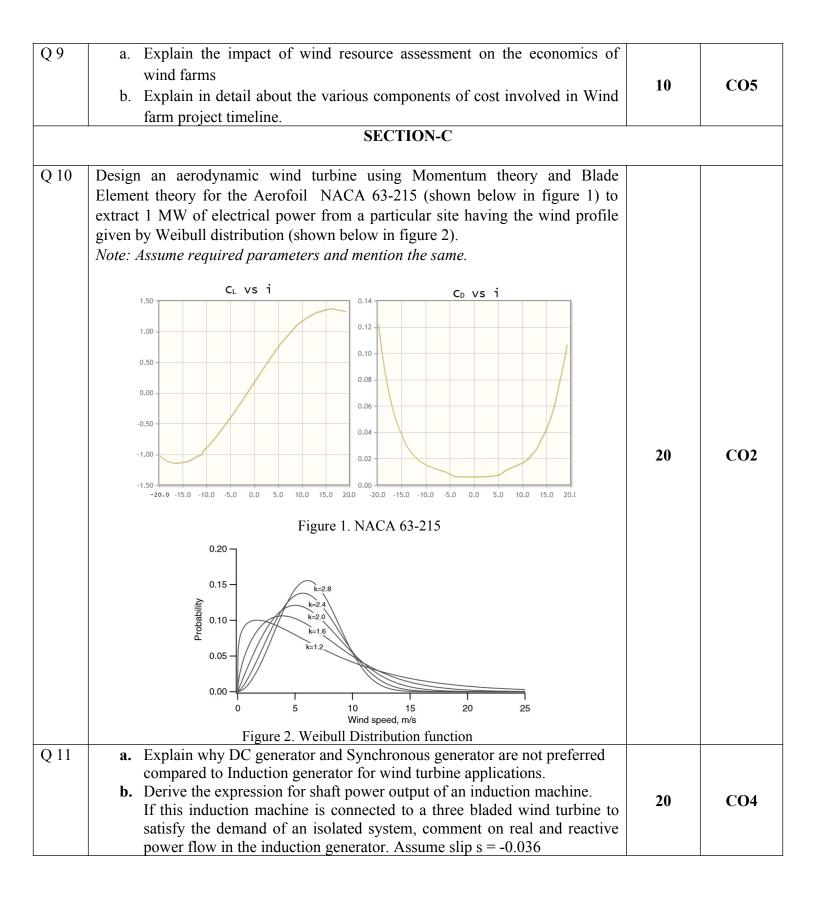
: 03 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: M. Tech REE

Course Name : Wind Energy Technology


Course Code : EPEC 8008

Nos. of page(s) : 2

Instructions: All questions are mandatory.

SECTION A

S. No.		Marks	СО
Q 1	Explain why the blade tip of a modern wind turbine can move at a speed abou ten times faster than the wind speed.	^t 4	CO1
Q 2	Find the size of wind turbine rotor (diameter in m) that will generate 1.2 MW electrical power in a steady wind of 8 m/s. Assume $\rho = 1.226$ kg/m ³ C _p = 0.45 Assume $\eta_m = \eta_e = 0.9$.		CO2
Q 3	Explain the physical significance of the following terms: a. Pitch angle b. Tower Shadow	4	CO3
Q 4	Explain the blade design procedure applicable for grid connected system	4	CO4
Q 4 Q 5	Explain in detail about the environmental impacts created by wind farms in th coastal region of India.	e 4	CO5
	SECTION B	· ·	
Q 6	Derive an expression for maximum power extracted from a wind turbine with following assumptions: a. $\eta_{Generator} = 90\%$ b. $\eta_{Wind Turbine} = (1/2) i \eta_{Generator}$	the 10	CO2
Q 7	The wind data for a site in terms of percentage of time over a year for different speed groups is given below:Speed group $0 < v \le 3$ $3 < v \le 6$ $6 < v \le 9$ $9 < v \le 12$ $12 < v \le 16$ $16 < v \le 16$ Speed group $0 < v \le 3$ $3 < v \le 6$ $6 < v \le 9$ $9 < v \le 12$ $12 < v \le 16$ $16 < v \le 16$ Percentage of time 12.36 28.25 29.37 18.96 9.31 1.67 Calculate the annual average power in the wind passing normally through the	20	CO3
Q 8	swept area of a turbine of diameter 30 m.A four-pole induction generator is rated at 300kVA and 480V. It has following parameters $Rs=0.015\Omega$ $R'_R=0.0132\Omega$ $X_s=X'_R=0.12\Omega$ $X_M=8\Omega$. H	low 10	CO4
	much power does it produce at a slip of -0.02? Also, find the torque, power fa and efficiency. (Ignore mechanical losses)		

