Name: Enrolment No:							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018							
Cours Progra Time: Instru	Surveying (C me: B Tech hrs. ons:	VL 2008) vil Engineer					
SECTION A							
S. No.						Marks	CO
Q 1	Define fly leveling and sketch the same.					4	CO1
Q 2	How Simpson's rule is superior to other rules for finding area?					4	CO2
Q 3	What are the three axes of the theodolite?					4	CO3
Q 4	What are the different stadia hairs generally used during tachometry?					4	CO4
Q 5	Define length of curve and how is it derived?					4	CO5
SECTION B							
Q 6	Find the RL of the roof top and the entrance sill of the room, with the following readings that were taken on a benchmark of $100.00,1.215$ and inverted staff reading of 0.25 (at entrance), 1.765 (in the middle of the roof)					10	CO1
Q 7	A two - level section has a formation width of 15 m and side slopes of 1.5:1. The traverse slope of ground is 6:1. The central heights at 25 m intervals are $2.5 \mathrm{~m}, 3.0 \mathrm{~m}$ and 3.5 m . find the volume of earthwork in the length of 50 m .					10	CO2
Q 8	Find the length and bearing of line BC from the partial data available for traverse ABCDA.					10	CO3
	Line	$\mathbf{A B}$	BC	CD			
	Length (m)	234.8	158.5	Missing	203.1		
	$\begin{array}{\|l\|} \hline \text { Bearing } \\ \hline \text { A tachometer } \\ \hline \end{array}$	N 30045' E	N 78 ${ }^{\circ} 40^{\prime} \mathrm{E}$	Missing	S 71 ${ }^{\circ} \mathbf{1 8}^{\prime} \mathrm{W}$		
Q 9	A tachometer vertically at depression wa 928.55 was 2 and $\mathrm{C}=0$. (OR) The tangent	was kept at the cross $7^{0} 06$. Fro 65 m . Find of a 4^{0}	tation P and readings 1.735 same set up, horizontal dis ular curve is	bservation 1.855 and he reading nce PQ and $2.45 \mathrm{~m} . \mathrm{de}$	were made to 755. The vert a staff held the RL of po mine the defl	10	$\begin{gathered} \mathrm{CO4}, \\ \mathrm{CO} 5 \end{gathered}$

	apex distance and the length of long chord.						
SECTION-C							
Q 10	The following staff readings were observed in sequence: $1.32,2.60,1.38,0.63,1.65$, $1.08,2.12$ and 1.55 . The instrument was shifted after the third and sixth readings. The third reading was taken to an arbitrary benchmark of elevation 0.000 . Find the reduced levels of all other points.					20	CO1
Q11	A curve of radius 300 m and deflection angle 75° was to be set from offsets from the chords produced. The chainage of the first tangent point is 1002.35 m . calculate the first five offsets from the chords produced to set out the curve. [10] Line AB is along the north direction and line BC has a bearing of 100°. A curve has to be set tangential to a point 225 m from B along BA and also tangential to BC . Tabulate the perpendicular offsets from the tangents to set out the curve. [10] (OR) To determine the elevation of a point P, a tachometer was set up at station A and observations were made to a staff held vertically at P. As a check, the instrument was set up at another B and observations were taken to a staff held at P. The RL of the BM was 135.455. The instrument constants were 100 and 0.2 . Determine the RL of P from the following data recorded.					20	$\begin{aligned} & \mathrm{CO4}, \\ & \mathrm{CO5} \end{aligned}$
	Instrument at A B	Staff at \mathbf{P} \mathbf{P}	Vertical Angle $\mathbf{3}^{\mathbf{0}} \mathbf{3 5}$ $\mathbf{2 0}^{\mathbf{0} 35}$	Hair Readings	Readings at BM 1.75 2.25		

Name: Enrolment No:			
Course: Surveying (CIVL 2008) Semester: III Programme: B Tech Civil Engineering Time: 03 hrs. Max. Marks: 100 Instructions:			
SECTION A			
S. No.		Marks	CO
Q 1	Define reciprocal leveling with a neat sketch.	4	CO1
Q 2	Differentiate between mid-ordinate rule and average ordinate rule.	4	CO2
Q 3	Derive the distance for an inclined line of sight with an angle of elevation α using tachometry.	4	CO3
Q 4	Explain the procedure for repetition method of measuring horizontal angles.	4	CO4
Q 5	What is a reverse curve draw sketch.	4	CO5
SECTION B			
Q 6	1. A two level section is shown in Figure find the area of the section; EF -2.4 mt , AB- 6 mt . 2.	10	CO2
Q 7	Students nearby to campus conducted a survey and the Chainage were noted at start and ends 99.450 and 134.660, a curve is to be established between the Chainage for a deflection angle 30° find the elements needed.	10	CO5
Q 8	The stadia readings obtained with a horizontal line of sight from an instrument were $1.36,0.96$ and 2.31 at a distance of 100 m . if the focal length of the objective lens was 20 cm and the distance between the objective lens and the vertical axis was 15 cm , find the stadia interval. $\mathrm{K}=100$ and $\mathrm{C}=0$	10	CO4

