Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

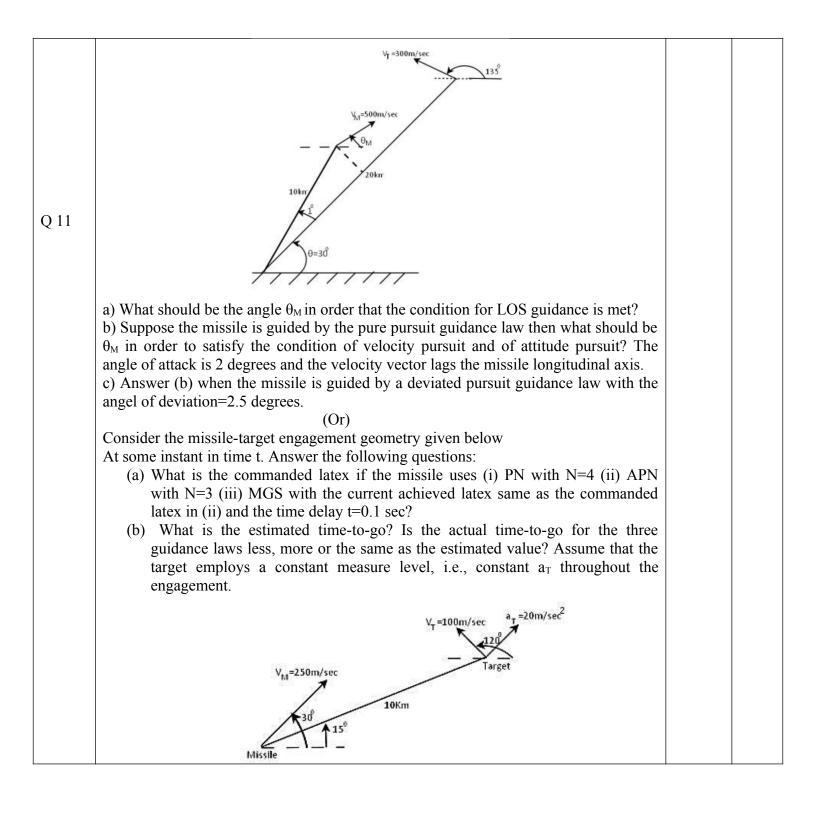
End Semester Examination, December 2018

Programme Name: M. Tech ASE+UAV

:

Course Name : Guidance and Navigation Course Code : AVEG 8003 Semester : III Time : 03 hrs Max. Marks : 100

Nos. of page(s)


Instructions: Make use of *sketches/plots* to elaborate your answer. Brief and to the point answers are expected. **The Question paper has three sections: Section A, B and C, Section B and C having internal choices.**

SECTION A

S. No.	Questions	Marks	CO
Q 1	What is the operating frequency range for VHF Omni directional finder and draw the block diagram.	4	CO1
Q 2	Why is it necessary for the Gyroscope assembly of a directional gyro to be caged when setting is heading?	4	CO2
Q 3	Find the received power signal of a GPS receiver located at a distance of 2X10-7m. The satellite effective radiated power is 26.8 dBW.	4	CO3
Q 4	Explain about the Homing Guidance	4	CO4
Q 5	Write short note on modern proportional Guidance Laws	4	CO5
	SECTION B		
Q 6	Design the ILS? An aircraft is following the ILS glide path of 3° at an airfield where the outer marker is 4.2 nm from the ILS touchdown point. The aircraft approach speed is 130 kt. Find the height of the aircraft at the outer marker.	4	CO3
1. Q7	Consider the direction cosine matrix, C = [Cij],, between two sets of right hand orthogonal unit vectors {a ₁ , a ₂ , a ₃ } and {b ₁ , b ₂ , b ₃ }, defined as $\begin{bmatrix} \vec{b}_1 \\ \vec{b}_2 \\ \vec{b}_3 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vec{a}_3 \end{bmatrix}$ Show that the direction cosine matrix C is an orthonormal matrix	10	CO2
	The rotor of a turbojet engine has a mass 200 kg and a radius of gyration 25 cm. The engine rotates at a speed of 10,000 rpm in the clockwise direction if viewed from the		

UPES

		Magnetic	Compass	Magnetic	Compass			
Q8	front of the aero	lanfeadingla	ne Deviation	at Heading/hr	. tu pasvivitba a r	adius of 2		
	km to the right.	Compute the	e gyr otsc opic	momen70the ro	tor exerts on	the plane		
	structure. Also, d	050° etermingowhet	her the phose o	225° f the plane tend	-2° s to riseor fall	when the		
	plane turns.	000°	$+2^{+2^{-}}$	315 ⁰	0^0		10	COI
	A flight is made t	from VOR A ($(51^{\circ} N \ 01^{\circ} W)$	local variation	1.8° W to VOR	B (51 ⁰ N		
	A flight is made from VOR A (51° N, 01° W), local variation 8° W to VOR B (51° N, 06° W), local variations 9° W. same radial is maintained throughout the flight. If drift							
Q 9	-							
Q)	is 7 Starboard a		ying great ch	cie patii, wilat	is the heading	g (M) on	(05+05	
	departure?						=10)	CO3
			(Or)					
	Design the follow							
	below, a) Interme	diate frequenc	y b) Echo Sigi	nal c) Ranging c	circuit for DME	2		
	-		SEC	ΓΙΟΝ-C				
Q 10	a) Given the follo	wing informat	ion find the ve	lue of deviation	coefficients A	B C		
Q 10		-				., D, C		
	aircraft magnetisr	11						
							20	CO4
	b) Why is it neces	sary for the G	vroscone assei	mbly of a direct	ional gyro to b	e caged		
	, -	•	yroseope asser		ional gyro to o	ceaged		
	when setting is he	ading?						
	Consider (1	ingila to t		ala avvur 1-1	A	fall'	20	
	Consider the m questions:	issile target	engagement	snown below.	Answer the	iollowing	20	CO5
	4400000							
	1							1

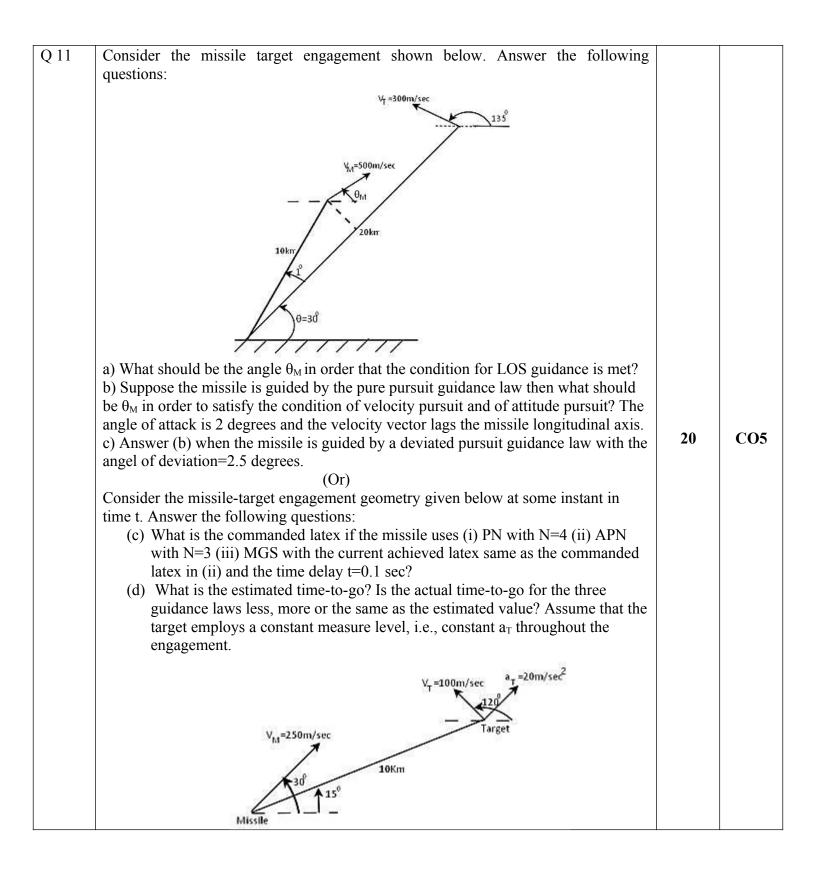
Name:	
Enrolment No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Programme Name: M. Tech ASE+UAV

:

Course Name : Guidance and Navigation Course Code : AVEG 8003 Semester : III Time : 03 hrs Max. Marks : 100


Nos. of page(s)

Instructions: Make use of *sketches/plots* to elaborate your answer. Brief and to the point answers are expected. **The Question paper has three sections: Section A, B and C, Section B and C having internal choices.**

S. No.	Questions			Marks	CO
Q 1	What are the types of secondary radar system and list the elements of such a system.			4	CO1
Q 2	Define : Coriolis effec	ts		4	CO2
Q 3	Find the free space loss factor on a GPS satellite L1 C/A code signal at a distance of 2X10-7m			4	CO3
Q 4	Discuss about the Pursuit Guidance Law			4	CO4
Q 5	Write some importanc	e of Modern Guidance	Maneuvering Targets	4	CO5
		SEC	TION B		
Q 6	Leg A to B B to C C to D TAS 4 engines 350 kt flow 3 engines 4,300 event of return to 'A'	kg/hr fuel on board at	W/C +35 +15 - 30 t Fuel flow 4 engines 5,200 kg/hr Fue take off 30,000 kg fuel required in the distance from 'A' to the critical poin	2	CO4

SECTION A

2. Q7	Consider the direction cosine matrix, C = [Cij],, between two sets of right hand orthogonal unit vectors {a ₁ , a ₂ , a ₃ } and {b ₁ , b ₂ , b ₃ }, defined as $\begin{bmatrix} \vec{b}_1 \\ \vec{b}_2 \\ \vec{b}_3 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vec{a}_3 \end{bmatrix}$ Show that the direction cosine matrix C is an orthonormal matrix	10	CO2
Q8	 Assuming an aircraft is flying in the southern hemisphere, What errors compass reading will be introduce when a) The Aircraft accelerates on an easterly heading b) The aircraft turns from southerly heading towards East c) Acceleration Error and northerly turning error 	10	CO1
Q 9	 A co-located VOR/DME is being used to track on airway inbound on the 160^o radial, at 60 nm DME range, the VOR indicates 336^o on the OBS and FROM/TO reads 'TO', Find the aircraft position. Design the Instrumentation parts of the VOR Receiver in details. a) Low pass Filter b) Discriminator c) Phase Shifting and adding Network d) Resolver e) Bridge phase Detector 	(05=05 =10)	CO3
	SECTION-C		
Q 10	 a) The operational details of an aircraft are, maximum takeoff weight 72,000 kg, maximum landing weight 63,000 kg and maximum zero fuel weight 60,000 kg, burn off fuel 6.5 tons, reserve fuel 3.5 tons, operational weight of aircraft 42,000 kg. Calculate the maximum payload that can be carried for this flight b) Describe the construction and operation of a fiber optic gyroscope processes under the influence of an applied torque. 	(10+10 =20)	CO3 CO1

