Name: Enrolment No:			
SECTION A			
S. No.	Questions	Marks	CO
Q 1	What is the operating frequency range for VHF Omni directional finder and draw the block diagram.	4	CO1
Q 2	Why is it necessary for the Gyroscope assembly of a directional gyro to be caged when setting is heading?	4	CO2
Q 3	Find the received power signal of a GPS receiver located at a distance of 2X10-7m. The satellite effective radiated power is 26.8 dBW .	4	CO3
Q 4	Explain about the Homing Guidance	4	CO4
Q 5	Write short note on modern proportional Guidance Laws	4	CO5
SECTION B			
Q 6	Design the ILS? An aircraft is following the ILS glide path of 3° at an airfield where the outer marker is 4.2 nm from the ILS touchdown point. The aircraft approach speed is 130 kt . Find the height of the aircraft at the outer marker.	4	CO3
Q7	Consider the direction cosine matrix, $\mathrm{C}=[\mathrm{Cij}]$,, between two sets of right hand orthogonal unit vectors $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$, defined as $\left[\begin{array}{l} \vec{b}_{1} \\ \vec{b}_{2} \\ \vec{b}_{3} \end{array}\right]=\left[\begin{array}{lll} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & C_{32} & c_{33} \end{array}\right]\left[\begin{array}{l} \vec{a}_{1} \\ \vec{a}_{2} \\ \vec{a}_{3} \end{array}\right]$ Show that the direction cosine matrix C is an orthonormal matrix The rotor of a turbojet engine has a mass 200 kg and a radius of gyration 25 cm . The engine rotates at a speed of $10,000 \mathrm{rpm}$ in the clockwise direction if viewed from the	10	CO2

	Magnetic Compass $^{\text {a }}$ Magnetic ${ }^{\text {a }}$ Compass		
Q8	km to the right. Confplte the gyrossiopic momeffothe rotor exefts on the plane plane turns.	10	CO1
Q 9	A flight is made from VOR A $\left(51^{0} \mathrm{~N}, 01^{0} \mathrm{~W}\right)$, local variation $8^{0} \mathrm{~W}$ to VOR B $\left(51^{0} \mathrm{~N}\right.$, $06^{\circ} \mathrm{W}$), local variations $9^{0} \mathrm{~W}$. same radial is maintained throughout the flight. If drift is 7 Starboard and aircraft flying great circle path, what is the heading (M) on departure? (Or) Design the following aircraft Interrogator and Transponder as per the details given below, a) Intermediate frequency b) Echo Signal c) Ranging circuit for DME	$\begin{gathered} (05+05 \\ =10) \end{gathered}$	CO3
SECTION-C			
Q 10	a) Given the following information find the value of deviation coefficients $\mathrm{A}, \mathrm{B}, \mathrm{C}$ aircraft magnetism b) Why is it necessary for the Gyroscope assembly of a directional gyro to be caged when setting is heading?	20	CO4
	Consider the missile target engagement shown below. Answer the following questions:	20	CO5

Name:	upES
Enrolment No:	

Progr Cours Cours Nos. 0 Instruc The Q		ES $\begin{aligned} & : ~ I I] \\ & : 03 \end{aligned}$ arks : 10 rs are exp	rs cted.
SECTION A			
S. No.	Questions	Marks	CO
Q 1	What are the types of secondary radar system and list the elements of such a system.	4	CO1
Q 2	Define : Coriolis effects	4	CO2
Q 3	Find the free space loss factor on a GPS satellite L1 C/A code signal at a distance of 2X10-7m	4	$\mathrm{CO3}$
Q 4	Discuss about the Pursuit Guidance Law	4	CO4
Q 5	Write some importance of Modern Guidance Maneuvering Targets	4	CO5
SECTION B			
Q 6	An aircraft has to fly from A to D and C, details are as follows: TAS 4 engines 350 kt TAS 3 engines 300 kt Fuel flow 4 engines $5,200 \mathrm{~kg} / \mathrm{hr}$ Fuel flow 3 engines $4,300 \mathrm{~kg} / \mathrm{hr}$ fuel on board at take off $30,000 \mathrm{~kg}$ fuel required in the event of return to ' A ' $4,000 \mathrm{~kg}$ Find out the distance from ' A ' to the critical point between A to D , assuming that an engine fails at the critical point	10	$\mathrm{CO4}$

Q7 ${ }^{2}$	Consider the direction cosine matrix, $\mathrm{C}=[\mathrm{Cij}]$, between two sets of right hand orthogonal unit vectors $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$, defined as $\left[\begin{array}{l} \vec{b}_{1} \\ \vec{b}_{2} \\ \vec{b}_{3} \end{array}\right]=\left[\begin{array}{lll} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{array}\right]\left[\begin{array}{l} \vec{a}_{1} \\ \vec{a}_{2} \\ \vec{a}_{3} \end{array}\right]$ Show that the direction cosine matrix C is an orthonormal matrix	10	CO2
Q8	Assuming an aircraft is flying in the southern hemisphere, What errors compass reading will be introduce when a) The Aircraft accelerates on an easterly heading b) The aircraft turns from southerly heading towards East c) Acceleration Error and northerly turning error	10	CO1
Q 9	A co-located VOR/DME is being used to track on airway inbound on the 160° radial, at 60 nm DME range, the VOR indicates 336° on the OBS and FROM/TO reads 'TO', Find the aircraft position. Design the Instrumentation parts of the VOR Receiver in details. a) Low pass Filter b) Discriminator c) Phase Shifting and adding Network d) Resolver e) Bridge phase Detector	$\begin{gathered} (05=05 \\ =10) \end{gathered}$	CO3
SECTION-C			
Q 10	a) The operational details of an aircraft are, maximum takeoff weight $72,000 \mathrm{~kg}$, maximum landing weight $63,000 \mathrm{~kg}$ and maximum zero fuel weight $60,000 \mathrm{~kg}$, burn off fuel 6.5 tons, reserve fuel 3.5 tons, operational weight of aircraft $42,000 \mathrm{~kg}$. Calculate the maximum payload that can be carried for this flight b) Describe the construction and operation of a fiber optic gyroscope processes under the influence of an applied torque.	$\begin{gathered} (10+10 \\ =20) \end{gathered}$	CO 3 CO1

Q11 | Consider the missile target engagement shown below. Answer the following |
| :--- |
| questions: |

