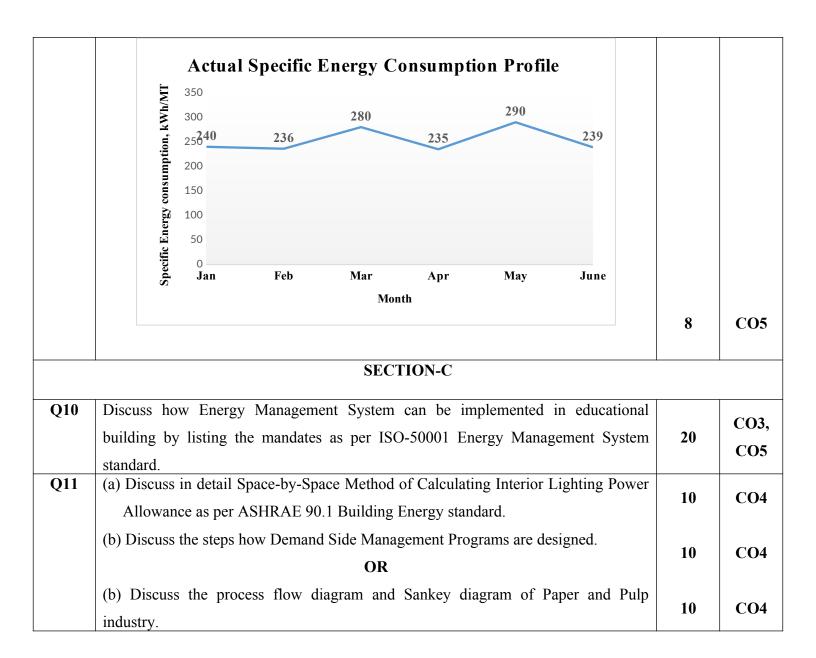
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme : M Tech Energy Systems Semester: III


Course : Energy Management and Audit Time: 03 hrs.

Course Code : EPEC – 8002 Max. Marks: 100

Instructions: Internal choice is given in Q9 And Q11.

			SECTION	ON A				
S. No.						Marks	CO	
Q1	Discuss the importance of environment.	energy	audit in	refe	rence to the company and	4	CO1	
Q2	Discuss any five benchmarkin benefits.	ng param	eters use	d by	different industries with their	4	CO2	
Q3	Draw and explain the cyclic pro	ocess of	ISO-5000	1 Ene	ergy Management System.	4	CO3	
Q4	List down the benefits of PAT and environment.	scheme	with refe	rence	to the Designated Consumers	4	CO5	
Q5	Explain the objective of the en of energy policy.	Explain the objective of the energy policy in an organization and give one example						
			SECTION	ON B				
Q6	Discuss in detail how Bachat Lamp Yojna played the crucial role in Indian economy also discuss the methodology how this scheme was introduced and implemented in India.						CO4	
Q7	A company has invested Rs.20 from the flue gas in DG Set. accured for 6 years as given be at 8% interest rate. Whether the bank loan.	Find out clow: The	the IRR compan	if the y got	annual net savings cash flow a bank loan for the investment	10	CO1	

Q8	In a textile plant the	averag	ge mo	nthly (energy	consu	ımptio	n is 7	,00,000) kWh	n of		
	purchased electricity f	rom g	rid, 40	kL of	f furna	ce oil	(speci	fic gra	vity =	0.92)	for		
	thermic fluid heater, 6	0 tonn	e of co	al for	steam	boiler	and 4	0 kL c	of HSE) (spec	eific		
	gravity = 0.885) for ma	terial l	handlir	ng equi	ipment								
	a. Calculate the en	nergy (consun	nption	in tern	ns of N	/etric	Tons o	of Oil I	Eguiva	lent		
	a. Calculate the energy consumption in terms of Metric Tons of Oil Equivalent for the plant.b. Calculate the percentage share of energy sources used based on consumption									10	CO2		
	in MTOE basis.												
			ha tax	rtila n	lant o	malific	ng 0.5	a noti	ified (lacion	atad		
	c. Comment weather the textile plant qualifies as a notified designated consumer under the energy conservation act.									aicu			
Q9	(a) Discuss the key ele						ation					2	CO2
	(b) Consider a foundry	whic	h durii	ng a m	onitori	ng pro	gram i	produc	es the	follow	ving		
	sample data			C		C 1		•					
	Month	1	2	3	4	5	6	7	8	9	7		
	Production,	_			-								
	Tonnes/Month,	380	440	460	520	320	520	240	620	600			
	X												
	Energy Use,	340	340	380	380	300	400	280	424	420			
	TOE/month, y]	8	CO5
	Draw the best fit	straigh	it line	by dei	riving	tne eq	uation	of the	line i	or ene	ergy	O	003
	benchmarking.												
				O	R								
	(b) Energy saving mea	sures	was in	npleme	ented in	n a pro	ocess p	olant pi	rior to	Jan-20	008.		
	Use CUSUM technique and calculate energy savings for 6 months period of 2008. The company produced consistently 3000 T/month in each of the six months. Refer the graph given in table below. The predicted Specific energy consumption for 3000 MT production is 260 kWh/MT. It may be noted that retrofits were not functioning during March & May 2008												
									ergy				
	it may be noted that renorts were not functioning during match & May 2006												

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme : M Tech Energy Systems Semester: III

Course : Energy Management and Audit Time: 03 hrs.

Course Code : EPEC – 8002 Max. Marks: 100

Instructions: Internal choice is given in Q9 And Q11.

SECTION A

S. No.		Marks	CO
Q1	List down the main aspects of ISO-50001 Energy Management Systems Standard.	4	CO3
Q2	Explain the concept of Benchmarking and on what criterion benchmarking parameters are different from Specify Energy Consumption parameters.	4	CO2
Q3	Explain the objectives of Energy Conservation Building Code.	4	CO4
Q4	List down the methodology of conducting detail energy audit.	4	CO1
Q5	A thermal power plant uses 0.65 kg of coal to generate one kWh of electricity. If the		
	coal contains 54% carbon by weight, calculate the amount of CO2 emissions/ kWh	4	CO2
	generated under complete combustion conditions.		
	SECTION B		
Q6	Renovation and Modernization (R&M) of a 210 MW coal fired thermal power plant		
	was carried out to enhance the operating efficiency from 28% to 32%. The specific		
	coal consumption was 0.7 kg/kWh before R&M. For 8000 hours of operation per		
	year, and assuming the coal quality remains the same, calculate	10	CO4
	i) the coal savings per year and		
	ii) the expected avoidance of CO2 into the atmosphere in Tons/year if the emission		
	factor is 1.53 kg CO2/kg coal		
Q7	A 500 MW coal plant based on conventional pulverized fuel has a gross efficiency of	10	CO2
	38%. The Gross calorific value of the coal used is 4000 kCal/kg with 40% total		
	carbon. A supercritical unit of 500 MW replaces the plant with a gross efficiency of		
	40% using the same characteristic coal. Calculate the following		
	(a) Specific coal consumption after replacement		
	(b) Amount of coal and carbon di-oxide saved during a year if the plant works for		

	8000 hours.				
Q8	A chemical plant has a contract demand of 2500 kVA with the power supply				
	company. The average maximum demand of the plant is 2100 kVA at a power factor				
	of 0.95. The maximum demand is billed at the rate of Rs.300/kVA. The minimum				
	billable maximum demand is 75 % of the contract demand. An incentive of 0.5 %				
	reduction in energy charges component of electricity bill are provided for every 0.01				
	increase in power factor over and above 0.95. The average energy charge component	10	CO1		
	of the electricity bill per month for the company is Rs.11 lakhs. The plant decides to	10	CO1		
	improve the power factor to unity.				
	A. Determine the power factor capacitor kVAr required, annual reduction in				
	maximum demand charges and energy charge component.				
	B. What will be the simple payback period if the cost of power factor capacitors				
	is Rs.800/kVAr.				
Q9	(a) During energy audit following data were obtained on a 3 phase induction motor:				
	Rated capacity:37 kW				
	Rated voltage: 415 V				
	Rated current: 65 A				
	Rated power factor: 0.89				
	Operating voltage: 410 V				
	Operating current: 40 A				
	Operating power factor: 0.75				
	Note: Motor efficiency does not change between 50 –100 % loading.				
	The plant operates for 7000 hours per year with the electricity cost of Rs. 4 per unit.				
	It is proposed to replace the original motor by a 30 kW energy efficient motor with				
	93% efficiency.				
	Determine the rated efficiency and the loading of the original motor.				
	Calculate the loading of the replaced motors.				
	• If replacing the existing motor with energy efficient motor costs Rs.75,000,				
	determine the payback period for the investment required for the energy				
	efficient motor over the ordinary motor.				
	(b) Explain in detail any 3 methods of relating plant energy consumption with	5	CO1		
	production.				

	OR	5	CO2			
	(b) Explain the process flow diagram of Indian Railways, draw and explain its					
	Sankey Diagram.					
	SECTION-C	5	CO2			
	SECTION-C					
Q 10	In the production department while reviewing weekly records, you note that energy					
	consumption in the June 4th week has significantly increased from expected energy					
	consumption. No reasons for this are documented and no actions are recorded. The					
	energy manager says consumption probably increased because of a heat wave and					
	states that no further evaluation or analysis is necessary.					
	a. What is the potential nonconformity implied in the incident.	20	CO3			
	b. What is the potential impact of the incidence for the auditee organization.					
	c. Is there sufficient evidence to raise nonconformity at this stage explain your					
	views in detail.					
	d. What further audit evidence would you seek in order to establish the full					
011	extent and significance of the incident.					
Q11	(a) During the Energy Audit of two pharmaceutical industries average SEC and production data was recorded for every 3 months in a year (4*3=12 one year)					
	which is given below,					
	3 Months Data 3 Months Data 3 Months Data 5 FG 100 LG 1/4 ST					
	SEC-121 kCal/ton SEC-98 kCal/ton SEC-129 kCal/ton SEC-100 kCal/ton Production-400 ton Production-56 ton					
	Industry-1 Industry-2					
	3 Months Data 3 Months Data 3 wionths Data					
	SEC-101 kCal/ton SEC-100 kCal/ton SEC-194 kCal/ton SEC-900 kCal/ton Production-100 ton Production-200 ton Production-430 ton Production-120 ton					
	Troduction 100 ton					
	Make suitable assumptions and plot monthly Specific Energy Consumption of					
	each Pharma Industry. It is proposed to implement energy efficiency project in					
	both the industries by replacing the LDO fired boiler by biomass-fired boiler where it was calculated that energy dependency would be cut by 38.7% each					

month. Keeping the operating hours same for both the campus determine the new		
monthly Specific		CO2
Energy Consumption for each campus and show the results by using the common	10	002
plot for both campus, give your comments on the performance of both industries.		
(b) Write short notes on		CO1
• Energy cost		
Industrial Benchmarking		CO2
Bachat Lamp Yojna		CO4
• ISO-50002	10	CO5
OR		
(b) Write short notes on		601
UDAY scheme		CO1
UJALA scheme		CO2
PAT Scheme	10	CO4
• ECBC		CO5