Name: Enroli	: ment No:					Lίι	JPES		
		UNIVE	RSITY OF	PETROLI					
				ester Exami					
	Course:Operations Research (IPEG452)SemeProgram:B.Tech Mechancial								
	: 03 hrs.	lechanelar					Max. Mark	ks: 100	
Instr	uctions:								
				SECTION	A (20 mark	s)			
S. No.								Marks	СО
Q1	Table shows not, find an o			-	-	h. Is it optime 6 20 7 7 $3 20$ 8 40	100 60 50 80	5	CO1

Q2	A project consists of 14 activities shown in brackets on the network is $(1 \rightarrow A(2) \rightarrow C(4) \rightarrow A(2) \rightarrow D(2)$		адп. Т 12 12	ighe lat 8 5	8st fir 9 4		ne (in			5	CO3
Q3	Four parts have to be assigned to one job is to be assigned to one time taken by the machines in assembled after machining and a assembly is completed?	mach minu	ine a tes is	nd on giver	e mao n in ta	chine s able. I	should f the	d get o parts	one job. The have to be	5	CO1
Q4	Solve the following game by usin	g the	princi	ple of	domi	nance	•				
					Play	ver B					
			Ι	II		IV	V	VI			
			4	2	0	2	1	1			
		1								-	000
	Player A	2	4	3	1	3	2	2	-	5	CO2
	Player A	2 3	4	3	7	-5	1	2	-	5	CO2
	Player A	2	4	3					-	5	CO2

				SECTIO	DN-B (60	Marks)				
Q 6	Determine the on the followi passing is not a									
	Job	Α	В	С	D	E	F	G		
	Machine M ₁	3	8	7	4	9	8	7	12	CO2
	Machine M ₂	4	3	2	5	1	4	3		
	Machine M ₃	6	7	5	11	5	6	12		
२ ७	A machine ope must choose a presently on t	sequence	for them.	The set-	up cost p	er change	depends	on the item		
Q 7	must choose a	sequence	for them.	The set-	up cost p to be ma	er change	depends	on the item		
Q 7	must choose a presently on t table:	sequence	for them.	The set- e set-up	up cost p to be ma tem	er change	depends	on the item		
Q 7	must choose a presently on t table:	sequence he machi	for them.	The set-up	up cost p to be ma tem	er change ade accor	depends ding to th	on the item		
Q 7	must choose a presently on t table: From item	sequence he machin	e for them. ne and th B	The set-up	up cost p to be ma tem	er change ade accor D	depends ding to th E	on the item	12	CO4
Q 7	must choose a presently on t table:	sequence he machin A ∞	e for them. ne and the B 4	The set-up To in C	up cost p to be ma tem 2 7 5	er change ade accor D 3	depends ding to th E 4	on the item	12	CO4
Q 7	must choose a presently on t table: From tem A B	sequence he machin A ∞ 4	e for them. ne and th B 4 ∞	The set-up To it	up cost p to be ma tem 7	er change ade accor D 3 3	depends ding to th E 4 4	on the item	12	CO4
27	must choose a presently on t table:	sequence he machin A 2 4 7	e for them. ne and the B 4 ∞ 6	The set-up To in To in C To c	up cost p to be ma tem 7 6 7	er change ade accor D 3 3 7	depends ding to th E 4 4 5	on the item	12	CO4

Q 8	For a given linear programming problem:		
	Maximize $Z = 4X_1 - 3X_2 + 3X_3$		
	Subjected to		
	$\begin{array}{c} 2X_1 + X_2 + 3X_3 \leq 7 \\ 2X_1 - X_2 + 4X_3 \geq 8 \end{array}$	12	CO4
	$X_1, X_2, X_3 \ge 0$	14	04
	a) Solve the problem without using artificial variables.		
	 b) Find the solution to the dual of the given problem. c) If the first constraint changes to 2X1 + X2 + 3X3 ≤ 5, use the sensitivity 		
	analysis to find the effect of the change.		
Q 9	A large steel manufacturing company has three options with regard to production:		
	(i) produce commercially		
	(ii) build pilot plat		
	(iii) stop producing steel.		
	The management has estimated that their pilot plant, if built, has 0.8 chance of high		
	yield and 0.2 chance of low yield. If the pilot plant does show a high yield,		
	management assigns a probability of 0.75 that the commercial plant will also have a	12	CO4
	high yield. If the pilot plant shows a low yield, there is only a 0.1 chance that the		
	commercial plant will show a high yield. Finally, management's best assessment of		
	the yield on a commercial-size plant without building a pilot plant first has a 0.6		
	chance of high yield. A pilot plant will cost Rs. 3, 00,000. The profits earned under		
	high and low yield conditions are Rs. 1, 20, 00,000 and Rs. 12, 00,000 respectively. Find the optimum decision for the company.		

Q10	A projec	t has the followi	ng time schedule:				
	Γ	Activity	Time in months	Activity	Time in months		
		(1-2)	2	4-6	3		
		(1-3)	2	5-8	1		
		(1-4)	1	6-9	5		
		(2-5)	4	7-8	4		
		(3-6)	8	8-9	3	12	CO4
		(3-7)	5			12	CO4
	(ve					

								-C (20 Mar	/			
		~			· · ·				•			
Q 12	 (Do either 12th or 13th question) XYZ Company has three departments – Assembly, Painting and Packing, and can make three types of almirahs. An almirah of type 1 requires on hour of assembly, 40 minutes of painting and 20 minutes of packing time, respectively. Similarly, an almirah of type 2 needs 80 minutes, 20 minutes and one hour, respectively. The almirah of type 3 requires 40 minutes each of assembly, painting and packing time. The total available time at assembly, painting and packing departments is 600 hours, 400 hours and 800 hours, respectively. Determine the number of each type of almirahs that must be produced in order to maximize the profit. The unit profit for types 1, 2 and 3 is Rs 40, Rs 80 and Rs 60, respectively. Suppose that the manager of XYZ company is thinking of renting the production capacities of the three departments to another almirah manufacturer – ABC Company. ABC Company would like to know the worth of production hours to them, in each of the departments to determine the rental rates. (a) Formulate this Problem as an LP problem and solve it to determine the number of each type of almirahs that should be produced by the XYZ Company in order to maximize its profit. 								20	CO3		
						(OR					
Q 13	Some denta work, Cate Time Prob Simul for th up at	e of the al work , their p gories e requir o. of cat ate the le patie the cli	e patient to be o probabilit red (min) egory: e dentist nts as w nic at ex	: take done. ties a):): 's clir ell as xactly	e more or The follo nd the tim Filling 45 0.40 hic for fou the illness their sch	less th owing sume actual Crow 60 0.1 ur hours s of the meduled	an 3 umm ally n vn 5 5 s anc doct arri	0 minutes hary shows eeded to co Cleaning 15 0.15 I determine tor. Assume	30 minutes a depending or the various omplete the w Extraction 45 0.10 e the average e that all the p arting at 8:00 n:	h the type of categories of vork. Checkup 15 0.20 waiting time patients show	20	CO3