Name:			,		
Enrolment No:					
	LINIVEDSITY OF DETDA	LEUM AND ENERCY S	TUDIES		
			IUDIES		
Program		-	Semester : \		
Course					
Course		ľ	Max. Marks: 1	00	
Nos. of]	NOTE: UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Semester : VII Time : 03 hrs. Max. Marks: 100 te Name: B-Tech PIE Semester : VII Time : 03 hrs. Max. Marks: 100 te : 30 hrs. SECTION A (20 Marks) SECTION A (20 Marks) SECTION A (20 Marks) Marks CO ove that mean flow stress is á SECTION A (20 Marks) Marks CO ove that mean flow stress is á á SECTION A (20 Marks) Image: SECTION A (20 Marks) Image: SECTION B (40 MARKS)				
Instruct		ION A (20 Marks)			
S. No.			Marks	CO	
Q 1		n n			
	$\dot{\sigma} = \frac{1}{r}$	$\frac{K \varepsilon^{n}}{2 + 1}$	4	CO2	
	1.	1 + 1			
Q2	Explain the effect of semi die angle in ext	trusion process.	4	CO1	
Q3.	Explain the concept of friction hill in cold	l forging.	4	CO1	
Q4.		ging			
	e		4	CO1	
	b. Funcing				
Q5	Define the advantage and limitations of Ir	ndirect extrusion process.	4	CO1	
	SECTIO	ON B (40 MARKS)			
Q6	Select & explain the suitable type of roll	ling mill, temperature condition and			
		01	10	CO1	
	 a. Ingot reduced to slab – Ductility r b. Rolling of thin sheet – Strength re 			001	
Q7	In a metal forming operation ,determine t				
	(according to von mises criterion)				
	Given data -		10	CON	
	Yield stress of material =1250 MPa σ_{11} =1250 MPa			CO2	
	$\sigma_{22} = 450 \text{ MPa}$				
	$\sigma_{12} = 200 \text{ N/mm}^2$				
Q8	Prove that Yield stress in Plain strain cond				
	$\sigma_0 = \frac{2}{\sqrt{2}}$	$\frac{2}{\sqrt{3}}\sigma_{0}$.	10	CO2	
00	v	5	10		
Q9	Differentiate between sticking and sliding a) maximum shear stress	g conditions on the basis of	10	CO1	

	b) Force requirement		
	c) Temperature conditions		
	d) Maximum pressure		
	e) Transition between sticking and sliding conditions OR		
	Explain the causes and remedies of following defects produced in rolling		
	a) Elastic flattening of roll		
	b) Wavy edges		
	c) Alligatoring	10	
	d) Edge cracks	10	CO3
	SECTION C (40 Marks)		
Q10	 The strain hardening behavior of an aluminum alloy is given by σ = 400 ε^{0.22} MPa. A right circular cylinder of this material 75 mm high and 25 mm diameter is to be upset to half of its height between flat dies at room temperature. Assume μ=0.4. a) Determine total forging load b) How much extra force is required over what would be needed if no friction were present? c) Calculate the ideal plastic work. 	20	CO4
Q11	An aluminum alloy billet is hot extruded at 400°C at 450mm/sec from 150mm diameter to 50 mm diameter. The mean flow stress at this temperature is 250		
	MPa. If the length of the billet is 380 mm and die angle is 60°, determine the force and power required if the extrusion is carried out by a) Direct process b) Indirect Process 	20	
	force and power required if the extrusion is carried out by a) Direct process	20	
	force and power required if the extrusion is carried out by a) Direct process b) Indirect Process OR A 20 percent reduction in the area in a 10 mm diameter steel wire is achieved whose flow stress is given by 	20	CO4
	force and power required if the extrusion is carried out by a) Direct process b) Indirect Process OR A 20 percent reduction in the area in a 10 mm diameter steel wire is achieved whose flow stress is given by $\sigma = 1300 \epsilon^{0.3} MPa$	20	CO4
	force and power required if the extrusion is carried out by a) Direct process b) Indirect Process OR A 20 percent reduction in the area in a 10 mm diameter steel wire is achieved whose flow stress is given by $\sigma = 1300 \epsilon^{0.3} MPa$ The semi die angle is 12° and the coefficient of friction is 0.09.	20	CO4
	force and power required if the extrusion is carried out by a) Direct process b) Indirect Process OR A 20 percent reduction in the area in a 10 mm diameter steel wire is achieved whose flow stress is given by $\sigma = 1300 \epsilon^{0.3} MPa$ The semi die angle is 12° and the coefficient of friction is 0.09. a. Calculate the drawing force	20	CO4
	force and power required if the extrusion is carried out by a) Direct process b) Indirect Process OR A 20 percent reduction in the area in a 10 mm diameter steel wire is achieved whose flow stress is given by $\sigma = 1300 \epsilon^{0.3} MPa$ The semi die angle is 12° and the coefficient of friction is 0.09.	20 20	CO4