Name:

Q. 10

Enrolment No:

Semester: VII

20

CO₄

Time: 3 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: LNG & Storage of Natural Gas (PTEG 465)

Programme: B.Tech. APE Gas

No. of pages: 02 Max. Marks: 100

	SECTION A		
Q. No.	Answer all questions. [5 X 4 = 20 marks]	Marks	CO
Q. 1	What are the health hazards associated with LNG?	5	CO1
Q. 2	Enlist the factors and models in LNG pricing.	5	CO3
Q. 3	Draw a neat sketch of 'Glycol-water intermediate fluid vaporizer for LNG.'	5	CO4
Q. 4	Give the significance of natural gas storage. Explain the two main storage methods employed.	5	CO5
	SECTION B	,	
	Answer all questions. [10 X 4 = 40 marks]		
Q. 5	Give the advantages and areas of concern of 'Black & Veatch - Pritchard PRICO Process' for LNG production.	10	CO1
Q. 6	Discuss 'Technigaz' and 'Gaz Transport' tank designs used in LNG carriers.	10	CO2
Q. 7	Explain LNG pricing conceptualization with respect to pricing formula, straight line approach and ceiling and floor approach. Figures are necessary.	10	CO3
Q. 8	Air is compressed from 1 bar and 290 K to 10 bar through isentropic compression with 90% efficiency. Estimate the energy required in MW to compress 10000 kg/h of air. Data for Q.8 Enthalpy of air at 1 bar $(H_1) = 4500$ cal/mol Enthalpy of air at 10 bar $(H_2) = 6200$ cal/mol (isentropic path) Average molecular weight of air = 29 g/mol	10	CO4
	SECTION-C Q.9 is compulsory. Out of Q.10 & 11 answer any one. [20 X 2 = 40 marks]		
Q. 9	Describe with flow diagram, 'Black & Veatch - Pritchard PRICO Process' for LNG production.	20	CO1

Describe with flow diagram, 'Power Plant with LNG Cold Energy Utilization'.

Case 2: Tube length = 8 m Case 3: Tube length = 12 m 20 Data for Q.11 Tube OD = 20 mm Type of flow = countercurrent LMTD correction factor = 1 Flow rate of sea water = 24000 m ³ /hr Density of sea water = 1.03 g/ml Specific heat of sea water = 3850 J/(kg ⁰ C)	
---	--