	Roll No:						
U	UPES						
UNI	VERSITY OF PETROLEUM AND ENERGY STUDIES						
End S	emester Examination, December 2018						
	amme: M.Tech. (PIPELINE) Semester – e Name: Numerical Methods In Engineering Max. Mark						
Cours	e Code: CHPL-7003 Duration	: 3 Hi	rs				
<u>No. 01</u>	page/s: 02						
	ictions:						
	pt all questions from Section A (each carrying 4 marks); attempt all questions from Section C (each carrying 20 marks).	ction B (e	ach				
curryn	SECTION A						
1	$(Attempt all questions)$ Obtain the polynomial $x^3 - 5x + 1$ in factorial notation.		CO1				
1.	Obtain the polynomial $x = 5x + 1$ in factorial hotation.	[4]	CO1				
	Consider the symmetric matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & k \\ -1 & k & 4 \end{bmatrix}$ where k is real and $k \in (a,b)$.						
2.	$\begin{bmatrix} 1 & 1 & 1 \\ -1 & k & 4 \end{bmatrix}$	[4] CO2					
	Find the values of a and b , such that matrix A has a unique Cholesky						
	decomposition of the form $A = LL^{T}$, where L is a lower triangular matrix.						
•	Consider the IVP: $y' = y^2 + x, y(0) = 1$	643	GOA				
3.	Use Taylor's series method to compute $y(0.1)$ correct to 2 decimal places.	[4]	CO3				
	Give the geometrical interpretation of Modified Euler's method to solve the IVP:						
4.		[4]	CO3				
4.	$\mathbf{y}' = f(\mathbf{x}, \mathbf{y}), \mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0.$	[4]					
	Derive the explicit Bender-Schmidt recurrence formula for one dimensional heat						
5.	equation.	[4]	CO4				
	SECTION B						
	(Q6-Q8 are compulsory and Q9 has internal choice)						
_	Find the missing terms in the following table: $x:$ $a-2$ $a-1$ a $a+1$ $a+2$	[10]					
6.			CO1				
-		[10]					
7.	Compute the definite integral $\frac{2}{3}$ (1.5)	[10]	CO1				
	$I = \int_{-2}^{2} max[x^3 , x^2] dx$						
	using Simpson's rule by dividing the interval $[-2,2]$ into 4 equal parts. Also						

Γ

			1
	compare the result with the actual value of the integral and calculate the absolute error in the calculated value of I .		
8.	An iterative method to find the root of the equation $f(x)=0$ is such that it fails if $f'(x_i)\approx 0$ for some x_i in the interval bracketing the root. Identify the method and use it to find the cube root of 10 correct to three decimal places.	[10]	CO2
9.	Consider the initial value problem: $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ Suppose $f(x, y) = g(x)$ and $y(x_1 = x_0 + h)$ is calculated using Runge-Kutta method of fourth order. Show that this method eventually reduces to Simpson's rule of numerical integration for $f(x, y)$ with step-size $\frac{h}{2}$. OR The fourth order Runge- i Kutta method $u_{j+1} = u_j + \frac{1}{6} [K_1 + 2K_2 + 2K_3 + K_4]$ is used to solve the initial value problem: $\frac{du}{dt} = u, u(0) = \alpha$. If $u(1) = 1$ is obtained by taking the step size $h = 1$, then find the value of α . SECTION C	[10]	CO3
	(Q10 is compulsory and Q11 has internal choice)		
	a .Solve $u_t = 5u_{xx}$ with $u(0,t) = 0; u(5,t) = 60$ and $u(x,0) = \begin{cases} 20x \text{ for } 0 < x \le 3\\ 60 \text{ for } 3 < x \le 5 \end{cases}$; for five time steps taking $h=1$ by using Bender-Schmidt method.		CO3
10.	b. Use finite-difference method to determine the value of $y(0.5)$ for the boundary value problem $y' + y + 1 = 0, 0 \le x \le 1$ with the conditions $y(0) = y(1) = 0$. Take $h = \frac{1}{4}$.	[10+10]	CO4
11.	a . Consider the IVP: $\frac{dy}{dx} = y - x$, $y(0) = 1$. Using Taylor's series method find an approximate solution $y \approx f(x)$ of the given IVP. Assuming $y = f(x) + \epsilon(x)$ as the accurate solution of the given IVP, try		CO3
	 to find the solution y accurately. b. Using Galerkin's method, compute the value of y(0.5)given the boundary value problem defined by y"+y+x=0,0<x<1 conditions="" the="" with="" y(0)="y(1)=0.</li"> OR </x<1>	[10+10]	CO4

	a . Solve $u_t = u_{xx}$ with $u(x, 0) = 0$; $u(0, t) = 0$ and $u(1, t) = t$. Compute u for $t = 1/8$ in two time steps, using Crank-Nicolson's method.		CO3
11.	b. Using Galerkin's method, compute the value of $y(0.5)$ given the boundary value problem defined by $y''+y-x^2=0, 0< x<1$ with the conditions $y(0)=y(1)=0$.	[10+10]	CO4

1

Γ

Roll No:							
U	UPES						
UNI	VERSITY OF PETROLEUM AND ENERGY STUDIES						
Progr Cours Cours	End Semester Examination, December 2018Programme: M.Tech. (PIPELINE)Semester – ICourse Name: Numerical Methods In EngineeringMax. MarksCourse Code: CHPL-7003DurationNo. of page/s: 02						
Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 10 marks); attempt all questions from Section C (each carrying 20 marks). SECTION A							
1	(Attempt all questions) Let $f(x) = x^3 + 1$. Find the factorial notation of $f(x)$	[4]	CO1				
1. 2.	 Let f(x)=x³+1. Find the factorial notation of f(x). Derive the implicit Crank-Nicolson recurrence formula for one dimensional heat 						
3.	equation. 3. Derive Modified Euler's method to solve the IVP: $y' = f(x, y), y(x_0) = y_0$.						
4.	4. Use Taylor's series approximation method to compute $y(0.1)$ correct to 2 decimal places if given that : $y' = y^2 - x$, $y(0) = 1$						
5.	For what values of <i>a</i> and <i>b</i> the symmetric matrix $A = \begin{bmatrix} 1 & 2 & k \\ 2 & 6 & 1 \\ k & 1 & 2 \end{bmatrix}$ where <i>k</i> is real and $k \in (a,b)$ has a unique Cholesky decomposition of the form $A = LL^T$, where <i>L</i> is a lower triangular matrix.	[4]	CO2				
SECTION B (Q6-Q8 are compulsory and Q9 has internal choice)							
6.							

		$I = \int_{-\infty}^{2} max x $	x^3 , x^4 dx					
	Also compare the result with the actual value of the integral and calculate the absolute error in the calculated value of I .							
	Find the missing terms in the fol	owing table	1			_		
7.	x: a-2	a-1	а	a+1	a+2		[10]	CO1
	$f(\mathbf{x})$: 3	0	?	0	?			
8.	An iterative scheme to find the zero of $f(x)$ is such that it converges quickly if $1/f'(x_i) \approx 0$ for some x_i in the interval bracketing the root. Identify the method and use it to find $(11)^{\frac{1}{3}}$ correct to 3 decimal places.					[10]	CO2	
9.	Suppose the Runge- i Kutta method (of order IV) $u_{j+1}=u_j+\frac{1}{6}[K_1+2K_2+2K_3+K_4]$ is applied to solve the initial value problem: $\frac{du}{dt}=2u,u(0)=\alpha$. If $u(1)=1/2$ is obtained by taking the step size $h=1$, then find the value of α . OR Consider the IVP: $\frac{dy}{dx}=f(x,y), y(x_0)=y_0$ Suppose $f(x,y)=g(x)$ and $y(x_1=x_0+h)$ is calculated using Runge-Kutta method of fourth order. Show that this method eventually reduces to Simpson's rule of numerical integration for $f(x, y)$ with step-size $\frac{h}{2}$.					[10]	CO3	
	(Q10 is co	SE(mpulsory a	CTION C nd Q11 h		choice)			I
10.	a .Solve $u_t = 5u_{xx}$ with $u(x, 0) = \begin{cases} 40 x \text{ for } 0 < x \le 3\\ 120 \text{ for } 3 < x \le 5 \end{cases}$, Schmidt method.					der-	[10+10]	CO3
	b. Consider the BVP defined by $y(0)=y(1)=0$. Using Galerk							CO4
11.	a . Using Taylor's series method						[10+10]	CO3
	IVP: $\frac{dy}{dx} = x - y$, $y(1) = 0$. A				curate			
	solution of the given IVP, try to find the solution y accurately.							

	$y'' + y - 1 = 0, 0 \le x \le 1$ with the conditions $y(0) = y(1) = 0$. Take $h = \frac{1}{4}$.		
	OR		
	a. Solve $u_t = u_{xx}$ with $u(x,0) = 0$; $u(0,t) = 0$ and $u(1,t) = 2t$. Compute u for $t = 1/8$ in two time steps, using Crank-Nicolson's method.		CO3
11.	b. Compute the value of $y(0.5)$ using Galerkin's method for the given BVP defined by $y'' + y + x^2 = 0, 0 < x < 1$ with the conditions $y(0) = y(1) = 0$.	[10+10]	CO4