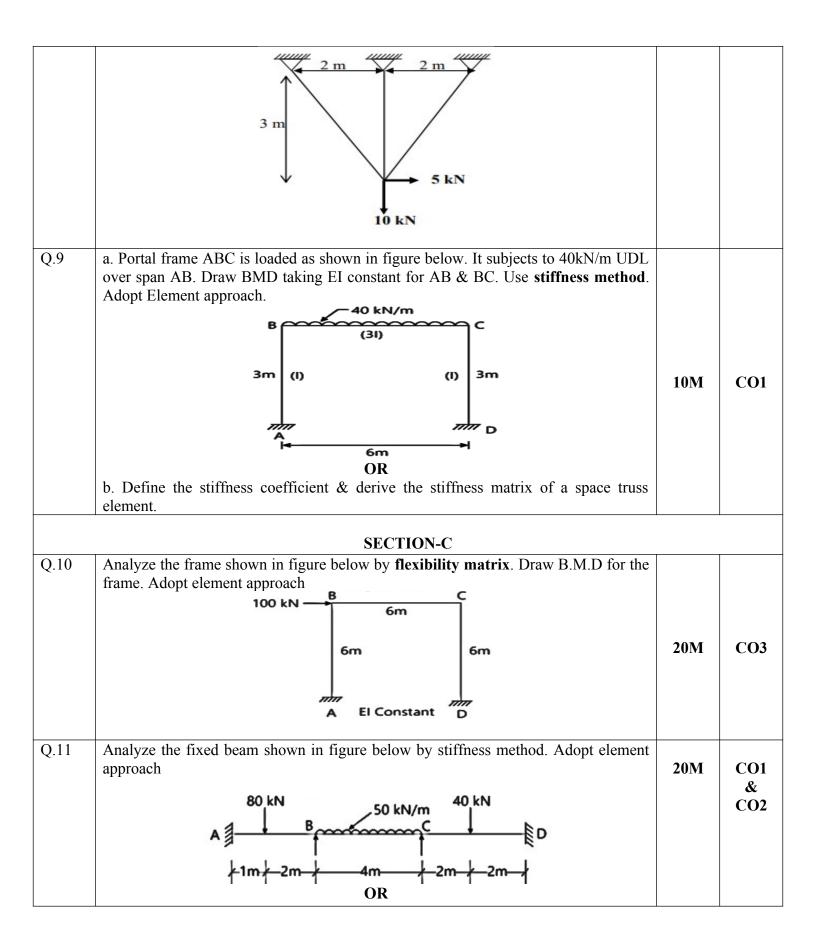
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018


Course: Matrix methods of Analysis

Semester: I

Program: M. Tech (Structures) Time: 03 hrs

May Marks: 100

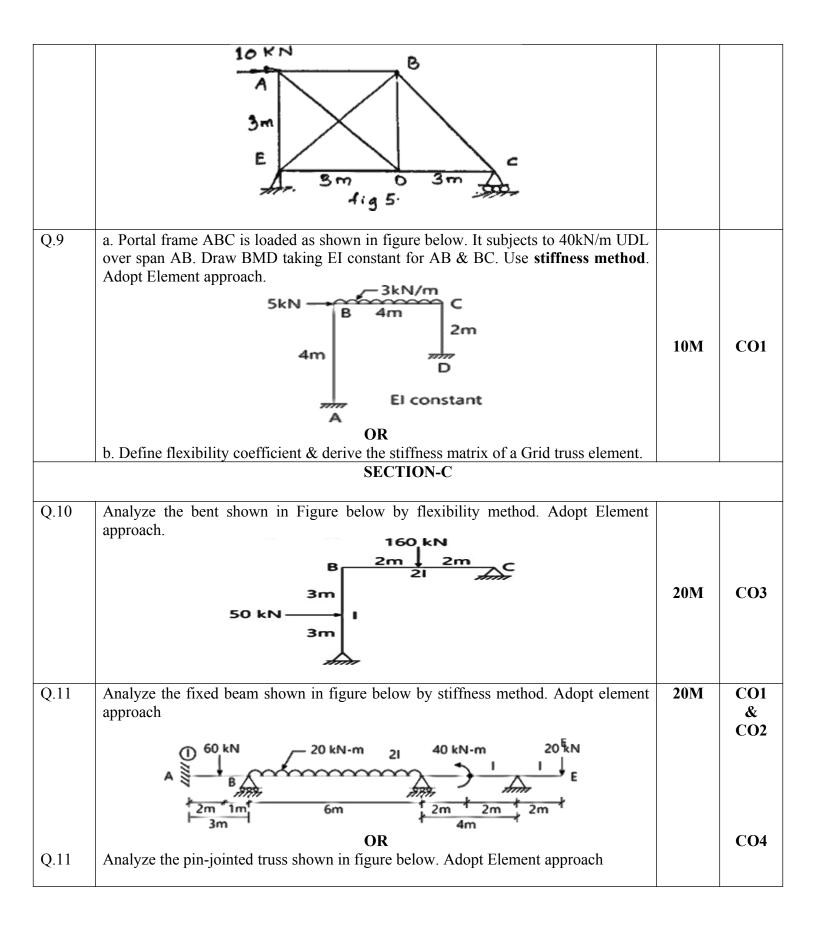
Time: (Max. Mai		
Instruc		PAPER-I		
SECTION A				
S. No.		Marks	CO	
Q.1	State Maxwell reciprocal theorem & its effect is evident in matrix method of structures.	4M	CO1	
Q.2	Explain structure & element coordinates with suitable examples.	4M	CO2	
Q.3	Obtain the force displacement equation of beam element .	4M	CO3	
Q.4	What are Eigen values & Eigen vectors. Explain.	4M	CO4	
Q.5	Prove that flexibility is inverse of stiffness matrix.	4M	CO3	
	SECTION B			
Q.6	Using the flexibility matrix , Analyze the beam supported & loaded as shown in Figure below. Assume the flexural rigidity constant. Adopt element approach.	10M	CO3	
Q.7	 a. Derive the stiffness matrix for two noded truss element of length "L" and axial rigidity "AE" b. How are basic equations of stiffness matrix obtained. 	10M	CO2	
Q.8	Analyze the pin jointed steel plane truss supported & loaded as shown in figure below. The cross sectional area of each member is 1000mm ²	10M	CO4	

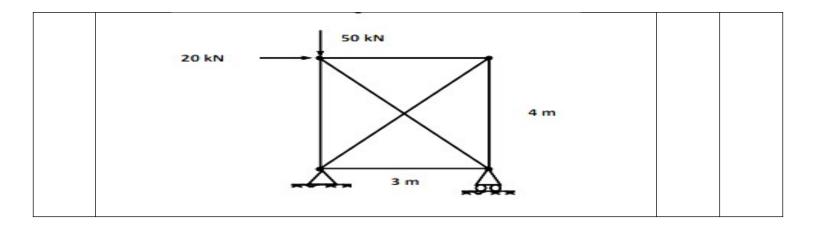
Q.11 Analyze the pin-jointed truss shown in figure below. Adopt Element approach $F_2 = 50 \text{ kN}$ $F_1 = 20 \text{ kN}$ **20M CO4**

Name:

Enrolment No:

Semester: I


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2018**


Course: Matrix methods of Analysis

Program: M. Tech (Structures)

Time: 03 hrs. Max. Marks: 100 **Instructions: PAPER-II**

SECTION A					
S. No.		Marks	CO		
Q.1	List out the difference between flexibility & stiffness methods.	4M	CO1		
Q.2	Explain the static & kinematic indeterminacy of structure with examples.	4M	CO2		
Q.3	How are basic equations of stiffness matrix obtained.	4M	CO3		
Q.4	State the importance of band width & measures to keep it minimum.	4M	CO4		
Q.5	Explain the importance of Transformation matrix in Element approach.	4M	CO3		
SECTION B					
Q.6	Using the flexibility matrix , Analyze the beam supported & loaded as shown in Figure below. Assume the flexural rigidity shown. Adopt element approach 60kN 60kN 60kN (I) (I) (21)	10M	CO3		
Q.7	 a. Derive the stiffness matrix for three noded truss element of length "3L" and axial rigidity "2AE" b. Obtain the force displacement equation of beam element. 	10M	CO2		
Q.8	Analyze the pin jointed steel plane truss supported & loaded as shown in figure below. The cross sectional area of each member is 1000mm ²	10M	CO4		

