Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, September/ October 2018

Programme Name: B.Tech Electrical Engg.

: Electromagnetic Field Theory **Course Name** : ECEG 2007

Course Code

Nos. of page(s) :3

Instructions: All questions are compulsory.

SECTION A

S. No.		Marks	CO
Q 1	Discuss in brief the physical significance of each Maxwell's equations for static EM fields.	4	CO 4,1
Q 2	Discuss the concept of magnetic vector potential with relevant equations.	4	CO 3
Q 3	For plane $z = 0$ and $z = 4$ carrying current $K = -10 a_x A/m$ and $K = 10 a_x A/m$ respectively. Determine H at $(1,1,1)$.	4	CO 2
Q 4	"The Poynting vector physically denotes the power density leaving or entering a given volume in a time varying field". Justify with relevant equations.	4	CO 4
Q 5	Derive laplace's equation pertaining to electrostatic potential distribution in a charge free space.	4	CO 3,1
	SECTION B		
Q 6	If $J = \frac{1}{r^3} \dot{\iota} + \sin\theta a_{\theta} \frac{A}{m^2}$, calculate the current passing through a hemispherical shell of radius	10	CO1,2
Q 7	20cm, $0 < \theta < (\Pi/2)$ and $0 < \phi < 2\Pi$. An electric field in free space is given by $\mathbf{E} = 50 \cos(10^8 t + \beta x) \mathbf{a}_z \text{ V/m}$.		
Q /	 a. Find the direction of wave propagation. b. Calculate β and the time it takes to travel a distance of λ/2. c. Sketch the wave at t=0, T/4, and T/2 	10	CO2
Q 8	Determine the equivalent capacitance for the cross section of spherical capacitor shown in the figure 1 below, given a=2.5mm, b=5mm, \mathcal{E}_{r1} =3.5 and \mathcal{E}_{r2} =4.5.	10	CO3
	(or) Electrohydrodynamic (EHD) pumping is modelled in figure 2 below. The region		

Semester : III Time : 03 hrs Max. Marks : 100

	between electrodes contains a uniform charge p_o , which is generated at the left electrode and collected at the right electrode. Calculate the pressure of the pump if $p_{o}=25$ mC/m ³ and Vo=22kV.		
Q 9	A square loop of wire placed in z=0 plane carrying 2 mA is subjected to a non- uniform magnetic field of an infinite filament on the y axis, as shown. The infinite filament carries current 15A. Determine the total force on the loop. Free space (1,0,0) (1,2,0) (3,0,0) (3,0,0) (3,0,0) (1,2,0)	10	CO2,4
	SECTION C		
Q 10	Determine H at (0,0,5) due to the segments 1 and 3 of the conducting triangular loop in following figure 3 carrying a current of 10A. $figure 3 = \frac{1}{10 \text{ A}} + \frac{1}{10 \text{ A}} + \frac{1}{2} + $	(20)	CO2,1

	Or		
	a. Discuss in brief the significance of magnetic vector potential in solving electromagnetic problems.		
	b. Using the concept of magnetic vector potential derive Biot Savart's Law and Ampere's Circuital Law.		
	(4+16=20)		
Q 11	 a. Using the concept of uniform plane waves explain the operating principle of microwave oven . b. Show that for a good conductor skin depth is given by 2π/λ. 	20	CO4
	(10+10)		

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, September/ October 2018

Programme Name: B.Tech Electrical Engg.

: Electromagnetic Field Theory **Course Name** : ECEG 2007

Course Code

Nos. of page(s) :3

Instructions: All questions are compulsory.

SECTION A

S. No.		Marks	СО
Q 1	Show that points P1(5,2,-4), P2 (1,1,2) and P3(-3,0,8) all lie on a straight line.	4	CO1
Q 2	Discuss in brief the application of Laplace and Poisson's equation in Electromagnetic Field problems.	4	CO3
Q 3	For 'D' to be vanished for $r > 10$ cm for a sphere of radius 10cm has $\rho_v = (r^3/100) \text{ C/m}^3$, determine the point charge that must be placed at the center of the sphere.	4	CO2
Q 4	If $\mathbf{P}=2 \sin(10t + x - \pi/4 i \mathbf{a}_y)$ and $\mathbf{Q}_s = e^{jx} (\mathbf{a}_x - \mathbf{a}_y) \sin \pi y$. Determine the phasor form of \mathbf{P} and instantaneous form of \mathbf{Q}_s .	4	CO4
Q 5	Obtain differential and integral form of Maxwell's equations for static electric and magnetic field.	4	CO4

SECTION B

Q 6	A spherical capacitor has inner radius 'a' and outer radius 'd', concentric with the spherical conductors and lying between them is a spherical shell of outer radius 'c' and inner radius 'b'. if the regions d>r>c, c>r>b, and b>r>a are filled with materials having permittivities \mathcal{E}_1 , \mathcal{E}_2 and \mathcal{E}_3 respectively, as shown in the figure 1 below. Determine the capacitance of the system. Fig. 1	10	CO3
Q 7	 i. State Poynting's Theorem. ii. In a non magnetic medium E= 4 sin(2π x10⁷t -0.8x) a_z V/m. Determine a. ε_r and intrinsic impedance b. Time average power carried by the wave c. Total power crossing 100 cm² of plane 2x+ y =5. 	10	CO4

Semester : III Time : 03 hrs Max. Marks : 100

Q 8	Verify Stoke's Theorem for the function $\mathbf{F} = (x^2 y \ a_x - y \ a_y)$ over the loop L shown in figure 2. $I = \left[\begin{array}{c} \int \\ \int $	10	CO2,4
Q 9	Determine H at P ₂ (0.4,0.3,0) in the field of an 8A filamentary current is directed inward from infinity to the origin on the positive x axis,and then outward to infinity along the y axis. $\frac{8 A}{\alpha_{2x}} + \frac{\alpha_{1y}}{\alpha_{1x}} + \frac{\alpha_{2y}}{\alpha_{1x}} + \frac{\alpha_{2y}}{\alpha_{1$	10	CO2,1
	SECTION C		
Q 10	a. Discuss the concept of maglev technology. Give its applications. b. For a rectangular loop carrying current I ₂ placed parallel to an infinitely long filamentary wire carrying current I ₁ shown in figure 3, determine the force experienced by the loop by the current carrying wire. $I_2 \ I_2 $	(20)	CO2,4,
	(or) A solid conductor of circular cross section is made of a homogeneous nonmagnetic		
			1

	material. If the radius $a = 1mm$, the conductor axis lies on the z-axis, and the total current in the a_z direction is 20A, find: a. H_{φ} at $\rho = 0.5mm$; b. B_{φ} at $\rho = 0.8mm$; c. the total magnetic flux per unit length inside the conductor; d. the total flux for $\rho < 0.5mm$; e. the total magnetic flux outside the conductor (5*4=20)		
Q 11	 a. Discuss the phenonmenon of skin effect. b. i.)"Regular lumped circuit components such as resistors, inductors and capacitors cannot be used at microwave frequencies". Justify. ii) Also discuss the concept of S-parameters. 	20	CO4