LIII UIIII			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
	End Semester Examination, December 2018		
	: Finite Volume Methods for conservation laws (ASEG7021) Semester: I		
0	mme: M. Tech CFD	100	
Time: (
Instruc	tions: Make use of sketch/plots to elaborate your answer. All sections are compulso SECTION A	ry.	
	SECTION A		
S. No.		Marks	СО
Q 1.	Differentiate between Lagrangian and Eulerian descriptions. Give suitable example		
	clearly stating advantages and disadvantages for each description.	[04]	CO1
0.0			
Q 2.	Classify the steady two-dimensional velocity potential equation:		
	$\left(1-M^2 ight)\phi_{xx}+\phi_{yy}=0$		
	where <i>M</i> is mach number. Explain the physical meaning of various classifications	[04]	CO2
	based on M .		
Q 3.	Explain the algorithm of the Jacobi Iteration method applied to a parabolic partial	[04]	
	differential equation.		CO2
			001
Q 4.	Define the following terms:		
	a) Diffusion number		
		[04]	CO1
	b) Approximate factorization		
Q 5.	What is the stability requirement of an explicit finite difference equation produced		
		[04]	CO3
	from the model equation $\frac{\partial u}{\partial u} = \alpha \left[\frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial u^2} \right]$	[04]	03
	from the model equation $\frac{\partial u}{\partial t} = \propto \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right].$		
	SECTION B		
Q 6.	Explain the basic methodology of Finite Difference Method. Derive the		
τ	discretization equation with the help of Taylors series for the following methods,		
	• Forward Difference		
	Backward Difference	[10]	CO1
	Central Difference		
	State the accuracy and stability criteria for each method.		
Q 7.	Derive the explicit MacCormack time marching algorithm for the solution of	[10]	CO2
ν /·	Derive the explicit Macconnack time matching algorithm for the solution of		002

Name:

Enrolment No:

	transient Euler equations in 2-dimensions		
Q 8.	Define the UPWIND interpolation scheme for the evaluation of fluxes at face centre using the nodal values on a structured finite volume grid. Find an expression for the artificial diffusivity introduced by this scheme.	[10]	CO3
Q 9.	Describe the underlying concept of the following terminologies: a) Consistency b) Stability c) Convergence d) Conservative property	[10]	CO3
	SECTION-C		
Q 10.	Shown in Figure below is a cylindrical fin with uniform cross-sectional area A. The base is at a temperature of 100 °C (T _B) and the end is insulated. The fin is exposed to an ambient temperature of 20 °C. One-dimensional heat transfer in this situation is governed by $\frac{d}{dx} \left(kA \frac{dT}{dx} \right) - hP(T - T_{\infty}) = 0$ where h is the convective heat transfer coefficient, P the perimeter, k the thermal conductivity of the material and T _a the ambient temperature. Insulated (zero heat flux across this boundary) $\frac{T_B}{T_{ambient}}$ Calculate the temperature distribution along the fin and compare the results with the analytical solution given by $\frac{T - T_{\infty}}{T_B - T_{\infty}} = \frac{\cosh[n(L - x)]}{\cosh(nL)}$	[20]	CO4
	where $n^2 = hP/(kA)$, L is the length of the fin and x the distance along the fin. Data: L = 1 m, $hP/\{kA\} = 25 \text{ m}^{-2}$ (note kA is constant). Solve for 5 and 10 nodes. Compare the result.		
Q 11.	Consider the model equation:		

 a ∂u/∂x = θ ∂²u/∂y² (a) Write an explicit formulation using a first-order forward differencing in x and a second-order central differencing in y. (b) Use von Neumann stability analysis to determine the stability requirement of the scheme. OR A property Ø is transported by means of convection and diffusion through the one-dimensional domain sketched in figure below. The governing equation below; d/dx (ρu Ø) = d/dx (τ dØ/dx) boundary conditions are Ø₀ = 1 at x = 0 and Ø_L = 0 at x = L. Using five equally spaced cells (for first two cases) and the central differencing scheme for convection and diffusion calculate the distribution of Ø as a function of x for cases: (i) Case 1: u = 0.1 m/s, using 5 cells (ii) Case 2: u = 2.5 m/s, using 5 cells (iii) Case 3: u = 2.5 using 10 cells ψ-1 ↓ + + + + + + - + + + - + + + + - + + - + + + - + + - + + + - + + + - +	[20]	CO4
	 (a) Write an explicit formulation using a first-order forward differencing in x and a second-order central differencing in y. (b) Use von Neumann stability analysis to determine the stability requirement of the scheme. OR A property Ø is transported by means of convection and diffusion through the one-dimensional domain sketched in figure below. The governing equation below; d/dx(puØ)=d/dx(tdØ) boundary conditions are Ø₀ = 1 at x = 0 and Ø_L = 0 at x = L. Using five equally spaced cells (for first two cases) and the central differencing scheme for convection and diffusion calculate the distribution of Ø as a function of x for cases: (i) Case 1: u = 0.1 m/s, using 5 cells (ii) Case 2: u = 2.5 m/s, using 5 cells (iii) Case 3: u = 2.5 using 10 cells ψ-1 ↓ -1 ↓ + -0 ↓ + -0 ↓ + -1 ↓	 (a) Write an explicit formulation using a first-order forward differencing in x and a second-order central differencing in y. (b) Use von Neumann stability analysis to determine the stability requirement of the scheme. OR A property Ø is transported by means of convection and diffusion through the one-dimensional domain sketched in figure below. The governing equation below; d/dx (ρuØ) = d/dx (τ dØ/dx) boundary conditions are Ø₀ = 1 at x = 0 and Ø_L = 0 at x = L. Using five equally spaced cells (for first two cases) and the central differencing scheme for convection and diffusion calculate the distribution of Ø as a function of x for cases: (i) Case 1: u = 0.1 m/s, using 5 cells (ii) Case 2: u = 2.5 m/s, using 5 cells (iii) Case 3: u = 2.5 using 10 cells ψ-1 (1/(x+0)) (x-0) (x-L) and compare the results with the analytical solution given below. The following data apply: length L = 1.0 m, p = 1.0 kg/m3, Γ = 0.1 kg/m/s.

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Finite Volume Method for conservation laws (ASEG7021) Programme: M. Tech CFD

Time: 03 hrs.

Max. Marks: 100

Semester: I

Instructions: Make use of sketch/plots to elaborate your answer. All sections are compulsory. SECTION A

S. No.		Marks	СО
Q 1.	 Under what conditions, the Navier-Stokes equation will become, Elliptic Parabolic Hyperbolic 	[04]	CO2
Q 2.	Differentiate between explicit and implicit methods for converting partial differential equations into finite differential equations.	[04]	CO1
Q 3.	Find a forward difference approximation of $O(\Delta x)$ for $\frac{\partial^4 f}{\partial x^4}$	[04]	CO2
Q 4.	What do you mean by initial and boundary conditions? Define various types of boundary conditions which are usually encountered in CFD problems.	[04]	CO1
Q 5.	What is the importance of CFL condition? Relate it to the analysis of stability?	[04]	CO3
	SECTION B	<u> </u>	
Q 6.	Explain with proper example how a pentadiagonal coefficient matrix can be reduced to two sets of tridiagonal coefficient matrix to be solved in sequence.	[10]	CO1
Q 7.	 Determine an approximate backward difference representation for ∂³ f/∂x³ which is of order (Δx), given evenly spaced grid points by means of: (a) Taylor series expansions. (b) A backward difference reccurence formulae (c) A third-degree polynomial passing throug four points. 	[10]	CO2
Q 8.	Given the function $f(x) = \frac{1}{4}x^2$, compute the first derivative of f at $x=2$ using forward and backward differencing of order (Δx). Compare the results with a central differencing of $O(\Delta x)^2$ and the exact analytical value. Repeat the computations for a step size of 0.4.	[10]	CO3

UPES

Q 9.	Explain the various methods for the approximation of surface integrals over a 2 - dimensional control volume. OR Derive the explicit Mac-Cormack time marching algorithm for the solution of transient Euler equations in 2-Dimensions.	[10]	CO3
	SECTION C		
Q 10.	Given the following data, compute $f'(5)$, $f'(7)$ and $f'(9)$. Use finite difference of order (Δx) . Compare the results to the values obtained by finite differencing of order $(\Delta x)^2$. $ \frac{x 5 6 7 8 9}{f(x) 25 36 49 64 81} $	[20]	CO4
Q 11.	Consider the problem of source-free heat conduction in an insulated rod whose ends are maintained at constant temperatures of 100 °C and 500 °C respectively. The one- dimensional problem sketched in Figure below, is governed by $\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$ Calculate the steady state temperature distribution in the rod. Thermal conductivity k equals 1000 W/m/K, cross-sectional area A is 10 x 10 ⁻³ m ² . Use at least 5 control volumes with appropriate interpolation scheme.	[20]	CO4