Name:

Enrolment No:

Course Code

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: M. Tech CE + PD

: CHPD7004

: Chemical Reactor Engineering and Design **Course Name**

Semester : I : 03 hrs Time

Nos. of page(s) :02

Instructions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever necessary. The notations used here have the usual meanings.

SECTION A (Total Marks: 3 x 10 = 30)

> Attempt <u>all</u> the questions. All questions carry equal marks.

S. No.		Marks	СО
Q 1	Enzyme E catalyses the fermentation of substrate A (the reactant) to product R. Find the size of mixed flow reactor needed for 95% conversion of reactant in a feed stream (25 liter/min) of reactant (2 mol/liter) and enzyme. The kinetics of the fermentation at this enzyme concentration are given by $\mathbf{A} \xrightarrow{\text{enzyme}} \mathbf{R}, \qquad -r_{\mathbf{A}} = \frac{0.1 C_{\mathbf{A}}}{1 + 0.5 C_{\mathbf{A}}} \frac{\text{mol}}{\text{liter} \cdot \text{min}}$	10	CO1
Q 2	The first-order isomerization $A \rightarrow B$ is being carried out isothermally in a batch reactor on a catalyst that is decaying as a result of aging. Derive an equation for conversion as a function of time.	10	CO3
Q 3	Explain about Geldart classification of solids in bubbling fluidized bed (BFB) with a neat sketch.	10	CO5
	SECTION B (Total Marks: 3 x 15 = 45)		
≻	Attempt <i>all</i> the questions. All questions carry equal marks.		
Q 4	What is a fixed bed reactor? Establish the mathematical equations in fluid and solid phases to design a fixed bed reactor along with boundary conditions. State the assumptions clearly.	15	CO4
Q 5	From a pulse input into a vessel, the following output signal is obtainedTime, min13579111315Concentration (arbitrary)0010101000If the flow through the vessel is represented with the tanks-in-series model, determine the number of tanks to use.	15	CO2
Q 6	i) Develop an expression for the conversion of nonisothermal continuos- flow reactor operated at steady state from the general energy balance equation.	05	CO2, CO3, CO5
	ii) What are the steps involved in a heterogeneous catalyst reaction?	05	

Max. Marks: 100

	iii) Explain in brief about slurry reactor with a neat sketch.	05	
Q 7	SECTION-C (Total Marks: 1 x 25 = 25) The second order decomposition reaction $A \rightarrow B + 2C$; is carried out in a tubular reactor packed with catalysts pellets 0.4 cm in diameter. The reaction is internal- diffusion limited. Pure A enters the reactor at a superficial velocity of 3 m/s, a temperature of 250°C and a pressure of 500 kPa. Experiments carried out on smaller pellets where surface reaction is limiting yielded a specific reaction rate of 50 m ⁶ /mol.gcat.s. Obtain an expression for the length of bed and calculate its value necessary to achieve 80% conversion. Neglect axial diffusion with respect to forced axial convection. Data: Effective diffusivity: 2.66 x 10 ⁻⁸ m ² /s Bed porosity: 0.4 Bulk density of bed: 2 x 10 ⁶ g/m ³ Internal surface area: 400 m ² /g For large values of Thiele modulus, $\eta = \left(\frac{2}{n+1}\right)^{1/2} \frac{3}{\phi_n}$; n is order of reaction.	25	CO3