Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: M.Tech

Programme: Petroleum Engineering

Semester: I

Max. Marks: 100

Time: 03 hrs. No. of Pages:03

Instructions: Attempt all questions from **Section A** (each carrying 4 marks); attempt all questions from **Section B** (each carrying 10 marks); attempt all questions from **Section C** (each carrying 10 marks).

	SECTION A				
S. No.		Marks	CO		
Q 1	An approximate value of π is given by 3.1428571 and its true value is 3.1415926. Find absolute and relative errors.	4	C01		
Q 2	Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ by using Trapezoidal rule.	4	CO2		
Q 3	Using Euler's method, find an approximate value of y corresponding to $x = 0.5$, given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$. (Take $h = 0.1$)				
Q 4	Find by Taylor's series method, the values of y at $x = 0.1$ to four places of decimals from $\frac{dy}{dx} = x^2y - 1$, $y(0) = 1$.	4	CO5		
Q 5	Define 5-Point finite difference approximation to partial derivatives.	4	CO6		
Q 6	Section B Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with				
	boundary values as shown in figure. 0 500 1000 500 0 0 0 0 1000 1000 1000 1000 2000 A u_4 u_5 u_6 B 2000 1000 1000 0 1000 0 0 0 0 0 0 0 0 0	10	CO6		

UPES

Q 7	Four equidistant va Lagrange's formul	a, show th	hat it may be w	written in the fo	orm	polated by		
	$u_x = yu_0 + xu_1 + $	- <u></u>	$u_{-1} + \frac{1}{3!}$	$\Delta^2 u_2$ where	x + y = 1.		10	CO1
Q 8	Apply Runge-Kutt 0.1, if $\frac{dy}{dx} = x + 2$				f y for $x = 0.2$	in steps of	10	CO5
Q 9	Apply Graeffe's method to find all the roots of the equation $x^4 - 3x + 1 = 0$. OR Find the cube root of 30 correct to three decimal places, using Horner's method.						10	CO3
	•		S	ECTION-C				·
Q 10A	The population of population for the			ensus was as g	iven below. Es	stimate the		
	Year X: Population y (in thousands)	1891 46	1901 66	1911 81	1921 93	1931 101	10	CO1
Q 10B	Apply Gauss-Seida 20y - z = -18; 2			lve the equation	x = 20x + y - 100	2z = 17; 3x +	10	CO4
Q 11A	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in 100. Compute <i>u</i> for Find the values of boundary condition x = i: i = 0, 1, 2,	or the time $u(x,t)$ sans $u(0,t)$	e step with $h = 0$ tisfying the part of $u = 0 = u(8, t)$	= 1 by Crank-M DR arabolic equation) and $u(x, 0) =$	Nicholson met ons $\frac{\partial u}{\partial t} = 4 \frac{\partial^2}{\partial t}$	hod. $\frac{2}{x^2}$ and the	10	C05
Q 11B	Consider the follow Find an approxim Consider the basis	wing boun nate soluti	dary value product dary value product dary value product $\frac{d^2 y}{dx^2} - y = x$ y(0) = 1 on $\overline{y}(x) = a$ $\phi_1(x) = (1 - b)$	oblem (BVP) $x^{2}, 0 \le x \le 1$ y(1) = 0. $y_{1}\phi_{1}(x) + a_{2}\phi_{2}$		kin's method.	[10]	CO6

Find an approximate solution of the following problem by Subdomain (Partition) method diving the interval $0 \le x \le 1$ two equal subintervals and using the basis functions $\phi_1(x) = (1 - x)$ and $\phi_2(x) = (1 - x)^2$. $\frac{d^2y}{dx^2} - y = x, 0 \le x \le 1$ $y(0) = 1, y(1) = 0.$	

CONFIDENTIAL

Name of Examination	:	MID		END	\checkmark	SUPPLE	
(Please tick, symbol is given)							
Name of the School	:	SOE	\checkmark	socs		SOP	
(Please tick, symbol is given)							
Programme	:	M.Tech	1		1	J 1	
Semester	:	I					
Name of the Course	:	Petrole	um Engineer	ing			
Course Code	:	MATH-7	7001 (Applie	d Mathema	atics in Petr	oleum Engine	eering)
Name of Question Paper	:	Dr Resh	u Gupta				
Setter							
Employee Code	:	400013	18				
Mobile & Extension	:	945606	8062, 1577				
Note: Please mention addition	onal	Station	ery to be pr	ovided, dı	uring exam	ination such	n as
Table/Graph Sheet etc. else	mer	ntion "N	OT APPLICA	BLE":			
FOR SRE DEPARTMENT							
Date of Examination :							
Time of Examination :							
No. of Copies (for Print) :							

Note: - Pl. start your question paper from next page

Model Question Paper (Blank) is on next page

 \checkmark

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: M.Tech

Programme: Petroleum Engineering

Max. Marks: 100

Semester: I

Time: 03 hrs. No. of Pages:03

Instructions: Attempt all questions from **Section A** (each carrying 4 marks); attempt all questions from **Section B** (each carrying 10 marks); attempt all questions from **Section C** (each carrying 10 marks).

	SECTION A		
S. No.		Mark s	СО
Q 1	Prove that, $\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$	4	CO1
Q 2	Find $\frac{dy}{dx}$ at $x = 0.1$ from the following table:		
	x: 0.1 0.2 0.3 0.4	4	CO2
	y: 0.9975 0.9900 0.9776 0.9604		
Q 3	Find by Taylor's series method, the values of y at $x = 0.2$ for differential equation $\frac{dy}{dx} = 2y + 3e^x, y(0) = 0$	4	CO5
Q 4	Use Picard's method to obtain y for $x = 0.2$. Given: $\frac{dy}{dx} = x - y$ with initial condition $y = 1$ when $x = 0$.	4	CO5
Q 5	Define Finite Difference approximations to partial derivatives in x direction.	4	CO6
	SECTION B		
Q 6	Solve the boundary value problem $u_t = u_{xx}$ under the conditions $u(0, t) = u(1, t) = 0$ and $u(x, 0) = \sin \pi x$, $0 \le x \le 1$ using Bendre-Schmidt method (Take $h = 0.2$ and $= \frac{1}{2}$).	10	CO6
Q 7	If p, q, r, s be the successive entries corresponding to the equidistant arguments in a table, show that when third differences are taken into account, the entry corresponding to the argument half way between the arguments at q and r is $A + \frac{B}{24'}$, where A is the		
	arithmetic mean of q and r and B is arithmetic mean of $3q - 2p - s$ and $3r - 2s - p$.	10	CO1

UPES

Enrolment No:

Name:

Q 8	Given that $\frac{dy}{dx} = \log_{10}(x + y)$ with the initial condition that $y = 1$ when $x = 0$.	10	CO5
	Find y for $x = 0.2$ and $x = 0.5$ using Euler's modified formula.	10	CO5
Q 9	Apply Graeffe's root squaring method to solve the equation $x^{3} - 8x^{2} + 17x - 10 = 0.$		
	OR Find by Horner's method, the positive root of the equation $x^3 + x^2 + x - 100 = 0$ correct to three decimal places	10	CO3
	SECTION-C		
Q 10A	Given the values $x:$ 57111317 $f(x):$ 150392145223665202Evaluate $f(9)$, using Lagrange's formula.	10	CO1
Q 10B	Solve the equations $27x + 6y - z = 85$; $x + y + 54z = 110$; $6x + 15y + 2z = 72$ by Gauss-Jacobi method.	² 10	CO4
Q 11A	Given the values of $u(x, y)$ on the boundary of the square in the figure, evaluate the function $u(x, y)$ satisfying the Laplace equation $u_{xx} + u_{yy} = 0$ at the pivotal point of this figure by Liebmann's process of iteration. 1000 1000 1000 1000 $1000 1000 1000$ $1000 1000 1000$ $1000 1000 1000$ $1000 1000 1000$ $1000 1000 1000$ $1000 1000 1000$ $1000 1000 1000$ $1000 1000 1000$ $1000 1000 1000$	s 10	CO5

