

Q 7	Four equidistant values u_{-1}, u_{0}, u_{1} and u_{2} being given, a value is interpolated by Lagrange's formula, show that it may be written in the form $u_{x}=y u_{0}+x u_{1}+\frac{y\left(y^{2}-1\right)}{3!} \Delta^{2} u_{-1}+\frac{x\left(x^{2}-1\right)}{3!} \Delta^{2} u_{2}$ where $x+y=1$.						10	CO1
Q 8	Apply Runge-Kutta method to find approximate value of y for $x=0.2$ in steps of 0.1, if $\frac{d y}{d x}=x+y^{2}$, given that $y=1$ where $x=0$.						10	$\mathrm{CO5}$
Q 9	Apply Graeffe's method to find all the roots of the equation $x^{4}-3 x+1=0$. OR Find the cube root of 30 correct to three decimal places, using Horner's method.						10	CO 3
SECTION-C								
Q 10A	The population of a town in the decimal census was as given below. Estimate the population for the year 1895 .						10	CO1
	Year X:	1891	1901	1911	1921	1931		
	Population y (in thousands)	46	66	81	93	101		
Q 10B	Apply Gauss-Seidal iteration method to solve the equation $20 x+y-2 z=17 ; 3 x+$ $20 y-z=-18 ; 2 x-3 y+20 z=25$.						10	CO4
Q 11A	Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ in $0<x<5, t \geq 0$ given that $u(x, 0)=20, u(0, t)=0, u(5, t)=$ 100. Compute u for the time step with $h=1$ by Crank-Nicholson method. OR Find the values of $u(x, t)$ satisfying the parabolic equations $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ and the boundary conditions $u(0, t)=0=u(8, t)$ and $u(x, 0)=4 x-\frac{1}{2} x^{2}$ at the points $x=i: i=0,1,2, \ldots \ldots, 7$ and $t=\frac{1}{8} j: j=0,1,2, \ldots \ldots, 5$.						10	CO5
Q 11B	Consider the following boundary value problem (BVP) $\begin{gathered} \frac{d^{2} y}{d x^{2}}-y=x^{2}, 0 \leq x \leq 1 \\ y(0)=1, y(1)=0 \end{gathered}$ Find an approximate solution $\bar{y}(x)=a_{1} \phi_{1}(x)+a_{2} \phi_{2}(x)$ by Galerkin's method. Consider the basis functions $\phi_{1}(x)=(1-x)$ and $\phi_{2}(x)=(1-x)^{2}$. OR						[10]	CO6

Find an approximate solution of the following problem by Subdomain (Partition) method diving the interval $0 \leq x \leq 1$ two equal subintervals and using the basis functions $\phi_{1}(x)=(1-x)$ and $\phi_{2}(x)=(1-x)^{2}$.

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-y=x, 0 \leq x \leq 1 \\
y(0)=1, y(1)=0
\end{gathered}
$$

CONFIDENTIAL

| Name of Examination |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (Please tick, symbol is given) | :

Note: - Pl. start your question paper from next page

Model Question Paper (Blank) is on next page

Name: Enrolment No:							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018							
Course: Program Time: 03 No. of P Instruct (each car	M.Tech me: Petro 3 hrs. ages:03 ions:Attem rying 10 m	neering ions from pt all qu	A (each from Sec	4 mark (each carr	Max. Marks: pt all question marks).	er: I 00 from \mathbf{S}	tion B
SECTION A							
S. No.						$\begin{gathered} \text { Mark } \\ \mathrm{s} \\ \hline \end{gathered}$	CO
Q 1	Prove that	$+\delta \sqrt{1}$				4	CO1
Q 2	$\text { Find } \frac{d y}{d x} \text { at }$$\mathrm{x}:$ y :	om the fo $\begin{gathered} 0.1 \\ \hline 0.9975 \\ \hline \end{gathered}$	table: $\begin{gathered} \hline 0.2 \\ \hline 0.9900 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.3 \\ \hline 0.9776 \end{gathered}$	$\begin{array}{c\|} \hline 0.4 \\ \hline 0.9604 \\ \hline \end{array}$	4	CO2
Q 3	Find by Taylor's series method, the values of y at $x=0.2$ for differential equation $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0$					4	CO5
Q 4	Use Picard's method to obtain y for $x=0.2$. Given: $\frac{d y}{d x}=x-y$ with initial condition $y=1$ when $x=0$.					4	CO5
Q 5	Define Finite Difference approximations to partial derivatives in x direction.					4	CO6
SECTION B							
Q 6	Solve the boundary value problem $u_{t}=u_{x x}$ under the conditions $u(0, t)=$ $u(1, t)=0$ and $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$ using Bendre-Schmidt method (Take $h=0.2$ and $=\frac{1}{2}$).					10	CO6
Q 7	If p, q, r, s be the successive entries corresponding to the equidistant arguments in a table, show that when third differences are taken into account, the entry corresponding to the argument half way between the arguments at q and r is $A+\frac{B}{24}$, where A is the arithmetic mean of q and r and B is arithmetic mean of $3 q-2 p-s$ and $3 r-2 s-p$.					10	CO1

Q 8	Given that $\frac{d y}{d x}=\log _{10}(x+y)$ with the initial condition that $y=1$ when $x=0$. Find y for $x=0.2$ and $x=0.5$ using Euler's modified formula.	10	CO5
Q 9	Apply Graeffe's root squaring method to solve the equation $x^{3}-8 x^{2}+17 x-10=0$ OR Find by Horner's method, the positive root of the equation $x^{3}+x^{2}+x-100=0$ correct to three decimal places	10	CO3
	SECTION-C		
Q 10A	Given the values Evaluate $f(9)$, using Lagrange's formula.	10	CO1
Q 10B	Solve the equations $27 x+6 y-z=85 ; x+y+54 z=110 ; 6 x+15 y+2 z=72$ by Gauss-Jacobi method.	10	CO4
Q 11A	Given the values of $u(x, y)$ on the boundary of the square in the figure, evaluate the function $u(x, y)$ satisfying the Laplace equation $u_{x x}+u_{y y}=0$ at the pivotal points of this figure by Liebmann's process of iteration.	10	CO5

	OR Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(x, 0)=\sin \pi x, 0 \leq x \leq$ 1 ; $u(0, t)=u(1, t)=0$ by using Crank Nicholson method. Carryout computations for two levels, taking $h=1 / 3, k=1 / 36$.		
Q 11B	Use Galerkin's methods to solve the boundary value problem $y^{\prime \prime}-y+x=0,0 \leq$ $x \leq 1, y(0)=0$ and $y(1)=0$. OR Solve the equation $y^{\prime \prime}+y=3 x^{2}$, with boundary points $(0,0)$ and $(2,3.5)$ by using method of Point Collocation.	[10]	CO6

