

	(ii) Ten percent of screws produced in a certain factory turn out to be defective. Find the probability that in a sample of 10 screws chosen at random, exactly two will be defective.		
8.	Kirchhoff's voltage law says that the sum of the voltage drops around any closed path in the network in a given direction is zero. When this principle is applied to a circuit, we obtain the following linear system of equations: $\begin{gathered} \left(R_{1}+R_{3}+R_{4}\right) I_{1}+R_{3} I_{2}+R_{4} I_{3}=E_{1} \\ R_{3} I_{1}+\left(R_{2}+R_{3}+R_{5}\right) I_{2}-R_{5} I_{3}=E_{2} \\ R_{4} I_{1}-R_{5} I_{2}+\left(R_{4}+R_{5}+R_{6}\right) I_{3}=0 \end{gathered}$ Solve for the currents I_{1}, I_{2} and I_{3} if $R_{1}=1, R_{2}=1, R_{3}=2, R_{4}=1, R_{5}=2, R_{6}=4$ and $E_{1}=23, E_{2}=29$, using Cholesky factorization method.	[8]	CO2
9.	Ten competitors in a musical test were ranked by the three judges A, Band C in the following order: Using rank correlation method discuss which pair of judges has the nearest approach to common likings in music.	[8]	CO5
10.	Solve by Picard's method: $\frac{d y}{d x}=x, \frac{d z}{d x}=x^{3}(y+z)$, where $y=1 \wedge z=\frac{1}{2}$ at $x=0$. Obtain the values of $y \wedge z$ when $x=0.2$ correct up to two places of decimal. OR Solve the equation $\frac{d y}{d x}=x+y$ with initial condition $y(0)=1$ by Runge-Kutta method of $4^{\text {th }}$ order from $x=0$ to $x=0.2$ with $h=0.1$.	[8]	CO3

SECTION C (Q11 is compulsory and Q12 has internal choice)			
11.A	The average height of 500 students is 151 cm and the standard deviation is 15 cm . Assuming that the heights are normally distributed, find out that how many students have heights between 120 and 155 cm . Given that the area under the standard normal curve between $\mathrm{z}=0$ and $\mathrm{z}=0.27$ is 0.4808 and between $\mathrm{z}=0$ and $\mathrm{z}=0.27$ is 0.1084 .	[10]	CO5
11.B	Show that the third divided difference with arguments x_{0}, x_{1}, x_{2} and x_{3} of the function $\frac{1}{x}$ is $(-1)^{3} \frac{1}{x_{0} x_{1} x_{2} x_{3}}$.	[10]	CO1
12.	Solve steady state 2-D heat flow problem $u_{x x}+u_{y y}=0$ with following conditions using Liebmann's iteration process: $0 \leq x \leq 4,0 \leq y \leq 4, u(0, y)=0, u(4, y)=8+2 y$, $u(x, 0)=\frac{x^{2}}{2}, u(x, 4)=x^{2}$ where $u(x, y)$ is temperature at the point (x, y). Perform two iterations only. OR Solve $u_{t}=5 u_{x x}$ with $u(0, t)=0 ; u(5, t)=60$ and $u(x, 0)=\left\{\begin{array}{c}20 x \text { for } 0<x \leq 3 \\ 60 \text { for } 3<x \leq 5\end{array}\right.$; for five time steps taking $h=1$ by using Bender-Schmidt method.	[20]	CO 4

