	using
Attempt all questions from Section A (each carrying 4 marks); attempt all questions from carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).	using
Section A	using
(Attempt all questions)	using
1. Find the smallest positive point x such that $f(x)=g(x)$ where $f(x)=\cos x$ and $g(x)=x$. Bisection method correct to 1 decimal place.	[4] CO2
2. Write down four limitations of Statistics.	[4] CO5
3. Solve the following equation by Newton Raphson method correct up to first place decimal $x e^{x} - 1 = 0$	e of [4] CO2
Find out the missing term:	
Alitude (mtr) 200 300 400 500 600	[4] CO1
Air Air Pressure 150 200 230 540 (Pascal) 540	
Calculate the Geometric Mean of the following data:5.54396879280.70.060.0040.0003	[4] CO5
SECTION B (Q6-Q9 are compulsory and Q10 has internal choice)	
Find $\frac{dy}{dx}$ at x=1.05 using the following data:	
6	[8] CO1
x 1.0 1.1 1.2 1.3 1.4	
y 7.989 8.403 8.781 9.129 9.451	
7. (i) Find the binomial distribution whose mean is 5 and variance is 10/3.	[8] CO5

	network	t in a g		ction is a	zero. Wh						path in the obtain the		
					$(R_1 + R$	$_3+R_4)I_1$	$_{1}+R_{3}I_{2}+$	$R_4I_3 = I$	E ₁				
8.	$R_{3}I_{1} + (R_{2} + R_{3} + R_{5})I_{2} - R_{5}I_{3} = E_{2}$											[8]	СО
	$R_4 I_1 - R_5 I_2 + (R_4 + R_5 + R_6) I_3 = 0$												
	$E_1 = 23$,E ₂ =2	urrents I_1 29, using	Cholesk	y factoriz	ation me	ethod.		_	-			
	Ten con order:	npetitoi	rs in a mu	isical tes	t were rai	nked by	the three	judges A	, Band (C in the f	following		
	Rank s by A	1	6	5	10	3	2	4	9	7	8		
9.	Rank s by B	3	5	8	4	7	10	2	1	6	9	[8]	CO
	Rank s by C	6	4	9	8	1	2	3	10	5	7		
			relation n s in musi		iscuss wł	nich pair	of judge	s has the	nearest a	approach	n to		
0.		<u> </u>	,									[8]	CO
	Solve b	y Pica	rd's met	hod: $\frac{dy}{dx}$	$=x, \frac{dz}{dx}$	$=x^{3}(y+$	(z), whe	re $y=1$	$x = \frac{1}{2}a$	it			
	x=0.0)btain 1	the value	es of $y \wedge$	z when z	x = 0.2 c	orrect u	p to two	places of	of decin	nal.		
						OR							
	Solve the equation $\frac{dy}{dx} = x + y$ with initial condition $y(0) = 1$ by Runge-Kutta method												
	Solve t	ne equ	auton										

	SECTION C (Q11 is compulsory and Q12 has internal choice)		
11.A	The average height of 500 students is 151 cm and the standard deviation is 15 cm. Assuming that the heights are normally distributed, find out that how many students have heights between 120 and 155 cm. Given that the area under the standard normal curve between $z = 0$ and $z = 0.27$ is 0.4808 and between $z = 0$ and $z = 0.27$ is 0.1084.	[10]	CO5
11.B	Show that the third divided difference with arguments x_0, x_1, x_2 and x_3 of the function $\frac{1}{x}$ is $(-1)^3 \frac{1}{x_0 x_1 x_2 x_3}$.	[10]	C01
12.	Solve steady state 2-D heat flow problem $u_{xx} + u_{yy} = 0$ with following conditions using Liebmann's iteration process: $0 \le x \le 4$, $0 \le y \le 4$, $u(0, y) = 0$, $u(4, y) = 8 + 2y$, $u(x, 0) = \frac{x^2}{2}$, $u(x, 4) = x^2$ where $u(x, y)$ is temperature at the point (x, y) . Perform two iterations only. OR Solve $u_t = 5u_{xx}$ with $u(0, t) = 0$; $u(5, t) = 60$ and $u(x, 0) = \begin{bmatrix} 20x \text{ for } 0 < x \le 3\\ 60 \text{ for } 3 < x \le 5 \end{bmatrix}$; for five time steps taking $h = 1$ by using Bender-Schmidt method.	[20]	CO4