Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: B.Tech CE+RP Semester

Course Name : Petroleum Refining Technology Time : 03 hrs.

Course Code : CHEG 437 Max. Marks: 100

Nos. of page(s) : 10

Instructions: (1) Assume suitable Data wherever necessary

	SECTION A (Attempt all FIVE Questions)							
S. No.		Marks	СО					
Q 1	For the given ASTM distillation, data in the following table calculate the UOP K factor, average boiling point (VABP, MEABP, and MABP), Correlation index, molecular weight and comment on the result. °API =23.5 Vol% T°F 10	10M	CO2					
Q 2	Using the Wilson, Lobo, and Hottel Equation for a box-type heater, calculate the outlet temperature of petroleum stock in a furnace where it is fed at a rate of 1500 bbl/hr (sp.gr.0.8524) and is passed through heat exchangers before it is fed into radiant section of a box type heater at 200°C. The pipe still heaters burns refinery off gas at a rate of 3250 kg/hr. The refinery off gas has a heating value of 11,300 Kcal/kg. In the radiant section of furnace, there is one row of tubes of 10 m long of 11.5 cm O.D. spaced at 2 O.D. The projected area of tubes is 155 sq meters. Air Fuel							
Q 3	ratio is 25. Sp.heat of stock is 2.66 kJ/kg °C, α=0.88. What is meant by overhead corrosion in crude distillation unit? Explain briefly what measures need to be taken to prevent the same?							
Q 4	What are the different types of coking? Explain any one method of coking with a suitable diagram?							
Q 5	Explain catalytic reforming process with reference to the following points only with a suitable diagram. a) Objective b) Feed stock c) Catalyst used d) Major Reactions e) Process Conditions CO4							
Q 6	What is the importance of cracking in refinery? Describe the process of hydrocracking in detail with suitable diagram?							

	SECTION B (Attempt any TWO questions)		
Q 7	For the Arabian Heavy crude oil whose TBP curve (Vol% distilled Vs Temperature °F) is given below, estimate the TBP of products (Kerosene and LGO). The cut range for kerosene is 375°F to 480°F and cut range for LGO is 480°F to 610°F. Brent and Arabian Heavy TBP Curves 1500	20 M	CO3
Q 8	 a) Explain the following: 8M i. Role of FCC in refinery ii. Modes of Fluidization iii. FCC catalyst b) A feed of 20,000 BPD of AGO (650–850°F) having an API of 24 and a sulphur content of 0.2 wt%, is mixed with another of feed of 15,000 BPD of VGO (850–1050° F) that has an API of 15 and a sulphur content of 0.35 wt%. They are used as a feed to FCC unit. Estimate the feed properties and Use the FCC correlations given in Appendix to calculate the yield of products from FCC. Assume a conversion of 75 LV%. 12M 	20 M	CO4

	Regenerated Catalyst C ₃ /C ₃ = C ₄ /iC ₄ /C ₄ = Gasoline LCO Spent Catalyst AGO + VGO + Steam		
Q 9	 a) With the help neat process flow diagram, describe the solvent dewaxing process? 10M b) Make a comparison between the various hydro conversion processes and reactor technology used. 10M 	20 M	CO5

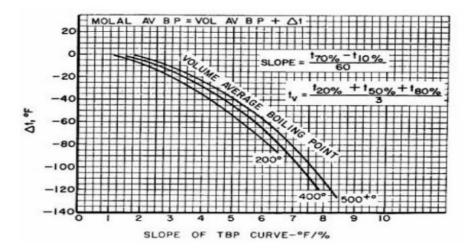


Fig. 10 Molal average boiling point of petroleum fractions

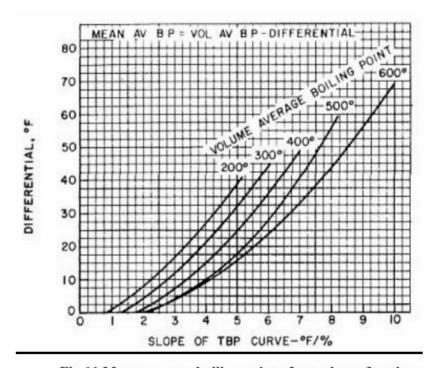
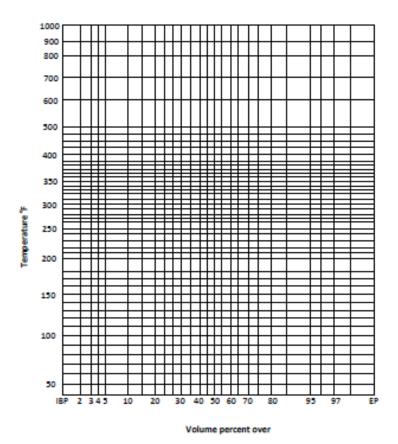
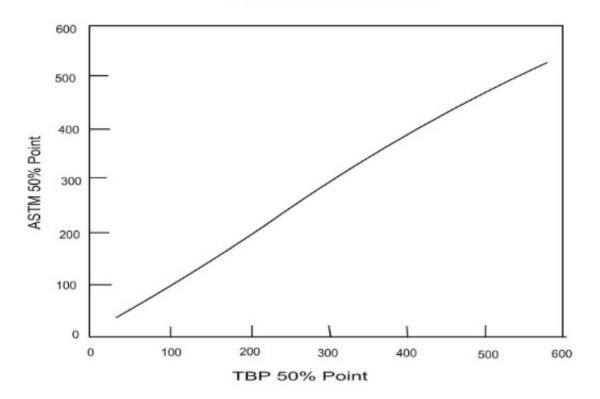



Fig.11 Mean average boiling point of petroleum fractions

480			201.319	191.174	181.139	171.254	161.127	
500			211.605	200.591	189.715	179.456	169.110	
520			222.386	210.830	199.031	187.685	176.365	
540			232.797	221.373	208.761	196.571	184.444	
560				232.206	219.068	206.019	192.562	
580				244.280	229.410	216.033	201.881	
600				256.867	241.053	226.386	211.664	
620				270.206	252.796	237.329	221.746	
640				284.579	265.535	249.244	231.901	
660				299.640	279.937	262.088	243.147	
680				314.428	294.088	274.070	254.362	
700				330.525	308.992	286.731	266.284	
720				346.094	324.137	302.034	279.799	256.350
740				362.792	339.010	317.470	293.587	269.871
760				378.761	356.110	331.730	307.285	282.406
780				396.112	371.811	347.474	321.642	295.480
800				414.225	388.517	362.886	336.861	308.755
820				431.710	404.926	378.024	350.271	322.104
840				448.263	422.817	394.631	366.309	336.478
860				467.186	439.000	411.105	381.136	350.167
880				485.253	456.069	426.951	397.625	365.202
900				504.444	473.298	443.368	412.016	380.935
920				521.642	491.813	460.804	427.960	396.645
940				540.431	508.462	477.082	443.855	413.040
960					526.999	493.824	460.293	428.276
980					543.180	511.031	476.876	444.464
1000					561.388	528.021	492.335	459.824
1020					579.708	545.854	510.006	474.981
1030					589.010	554.911	518.720	484.254
1040					597.408	563.222	526.663	492,425
1060						580.517	544.863	510.209
1080						599.227	561.993	526.436
1100							579.496	542.104
1120							596.069	558.957
1140								573.783

A			3		c)		E
T (°F)	Δ (°F)								
126.4	-41.1	413.2	-18.9	476.5	-7.0	470.5	2.6	504.8	-13.3
316.4	-2.1	421.7	-20.2	453.4	-6.1	482.5	1.7	208.6	-6.6
324.1	-3.6	432.0	-21.6	460.3	-7.4	494.5	0.8	222.3	-8.0
334.4	-5.4	442.3	-22.3	471.4	-9.0	513.4	-1.1	236.0	-8.9
343.0	-7.0	455.1	-21.6	480.8	-10.5	531.3	-3.4	258.2	-11.0
351.5	-8.4	466.3	-20.3	490.2	-11.9	545.9	-4.8	280.5	-12.2
360.1	-10.0	474.8	-19.1	498.8	-13.5	559.6	-7.1	307.9	-14.7
369.5	-11.5	486.8	-17.5	515.1	-16.3	572.4	-9.0	328.4	-15.9
378.1	-13.0	495.4	-16.7	521.9	-17.9	589.6	-12.2	345.5	-17.3
385.8	-14.4	504.8	-15.6	531.3	-19.7	601.5	-14.3	367.0	-19.3
395.2	-15.9	516.8	-14.8	543.3	-21.9	612.7	-16.4	386.6	-20.7
404.6	-17.5	355.8	-4.5	550.2	-23.9	622.1	-18.5	406.3	-22.4
404.0	-27-2	363.5	-5.6	559.6	-25.6	628.9	-20.4	426.9	-23.5
		371.2	-6.1	365.6	-27.7	637.5	-22.0	446.6	-24.9
		380.7	-7.3	576.7	-30.5	646.1	-23.7	466.3	-24.9
		390.1	-8.2	584.4	-32.3	652.9	-25.7	486.0	-28.2
		396.9	-8.9	593.0	-34.2	659.8	-27.2	504.8	-29.5
		402.9	-9.6	639.2	-40.5	666.6	-29.2	522.8	-30.7
		409.8	-10.5	035.2	40.5	672.6	-30.7	544.2	-32.6
		417.5	-11.2			682.0	-32.7	365.6	-34.2
		428.6	-12.8			688.9	-35.1	585.3	-35.8
		437.2	-13.8			000.3	-53.1	602.4	-37.0
		444.9	-15.1					620.4	-38.6
		455.1	-16.8					648.6	-40.6
		454.3	-17.0					662.3	-41.6
		464.6	-18.2					677.7	-42.8
		474.8	-20.3					690.6	-43.9
		481.7	-21.7					650.6	43.3
		488.5	-23.3						\vdash
		496.2	-25.4						$\vdash \vdash \vdash$
		504.8	-27.5						\vdash
		511.6	-29.3						\vdash
		519.3	-31.2						\vdash
		524.5	-32.6						\vdash
		532.2	-34.4						\vdash
		343.9	-37.7						\vdash
		553.6	-39.8						\vdash
		560.4	-41.7						\vdash
		569.0	-43.9						\vdash
		578.4	-45.4						\vdash
		587.0	-45.8						\vdash
		599.0	-45.4						\vdash
		615.2	-42.1						$\vdash \vdash \vdash$
		628.1	-37.9						\vdash
		640.9	-35.1						\vdash
		652.1	-33.0						\vdash
		002.2	23.0						

End point correlation data presented by Good, Connel et. al. Data sets represent fractions whose cut point starts at 200 °F TBP or lower (Set A); 300 °F (Set B); 400 °F (Set C); 500 °F (Set D); 90% vol temperature of the cut Vs. 90 % vol TBP cut for all fractions (Set E).



Probability chart developed by Thrift for estimating ASTM temperatures from any two known values of ASTM temperatures.

Segment of Distillation Curve, Volume Percent									ASTM 5				
0 to 10 %		10 to	30 %	30 - 50 %		50 - 70%		70 - 90%		90 - 100%		ASTM	TBP
ASTM AT (°F)	TBP	ASTM	TBP	ASTM	TBP	ASTM	TBP	ASTM	TBP	ASTM	TBP	50%	50 %
. ,	ΔΤ	ΔΤ	ΔΤ	ΔΤ	ΔΤ	ΔΤ	ΔΤ	ΔΤ	ΔΤ	ΔΤ	ΔΤ	Temp (°F)	Temp (°F)
	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	17	17
0.27	0.27	0.27	0.55	0.27	0.27	0.55	1.09	0.28	0.82	0.55	1.09	101.70	-9.87
1.37	4.37	2.74	4.64	1.93	4.89	3.58	8.16	4.13	7.34	6.32	7.61	141.50	-8.75
3.01	8.19	5.21	11.74	5.78	13.05	3.30	7.07	12.10	17.66	14.29	16.30	199.15	-7.62
6.03	13.92	10.14	20.74	10.45	18.21	7.97	12.50	17.87	25.00	22.26	26.08	258.17	-5.66
8.49	19.65	16.71	31.93	13.75	23.92	20.89	31.52	23.09	30.43	30.23	33.41	310.33	-4.26
11.23	25.11	21.10	38.76	18.70	30.44	29.14	42.12	28.31	36.95	36.00	39.66	359.75	-2.32
14.52	30.29	26.03	46.13	22.55	36.69	33.54	46.74	32.98	41.30	41.77	44.82	416.04	-0.10
18.08	36.57	29.59	51.04	27.22	42.94	38.21	52.99	39.03	48.09	46.16	50.25	464.10	2.11
22.19	42.85	33.15	36.50	31.62	48.10	45.35	59.50	43.97	54.07	51.11	54.87	501.18	4.05
27.12	49.95	38.36	62.24	36.02	53.81	53.32	67.65	51.12	61.40	55.23	60.31	553.37	7.35
30.96	55.14	42.74	66.61	40.14	58.70	58.82	73.36	59.36	69.00	59.08	63.84	595.95	10.37
35.07	60.33	46.85	72.07	44.53	63.04	64.86	79.88	64.30	73.08	65.12	70.90	631.67	13.38
39.73	66.61	50.69	75.90	48.93	67.12	71.45	85.31	69.52	78.51	69.52	75.24	685.26	18.31
43.56	71.79	54.52	80.26	55.52	73.91	77.22	90.47	76.12	85.30	73.37	81.50	725.13	22.96
47.12	76.44	58.90	84.09	60.47	78.79	87.11	98.88	83.26	91.27	78.04	88.83	755.39	27.33
50.69	81.35	63.01	88.19	65.14	83.41	92.88	104.59	90.95	98.88	82.99	96.44	787.03	32.51
56.16	87.90	68.49	92.29	69.81	87.49	99.20	110.02	96.45	102.68	85.74	101.88	818.68	38.23
61.10	93.09	72.05	95.84	74.48	91.83	105.79	116.54	98.92	105.94	89.32	108.40	847.60	44.50
66.03	99.65	75.34	98.57	80.25	96.99	113.76	123.60	104.69	111.10	92.34	114.38	869.64	49.67
70.41	105.65	75.34	98.84	85.47	102.42	120.35	129.84	111.01	117.35	94.82	119.82	897.23	58.37
75.62	111.39	90.14	111.68	91.24	106.77	125.30	134.73	118.70	124.68	97.02	125.80		
81.37	117.94	94.25	115.23	95.36	110.84	131.07	140.17	125.57	131.47				
85.21	123.40	97.81	117.42	103.60	118.17	135.46	145.05	130.24	135.81				
89.04	128.04	102.47	122.06	108.54	122.52	140.68	149.40	137.11	143.96				
		106.85	125.62	114.59	127.95	144.81	154.56	142.60	148.85				
		110.41	128.90	120.63	133.38	150.58	161.08	147.00	153.47				
		114.79	132.45	127.23	139.90	157.72	167.33	150.30	156.73				
		119.45	137.09	131.35	143.43	162.39	173.85	153.87	160.80				
		124.93	141.74	137.12	149.68	167.62	182.00	156.34	163.79				
		129.32	146.11	143.44	156.47	172.29	187.98	159.92	168.41				
		133.15	150.20	148.11	160.81	175.31	191.78	163.76	171.67				
		138.90	155.39	153.05	166.52	179.43	196.13	167.61	177.65				
		144.38	160.58	158.27	173.04	178.06	198.31	170.63	182.00				
		150.14	167.41	162.67	177.93			175.03	187.43				
		155.34	173.96	166.79	183.09			178.33	191.51				
		160.82	180.52	169.54	186.89								
		166.03	187.07	174.22	192.87			_					
		172.60	194.99	176.97	197.22								
		179.45	203.45	179.71	200.21								
		272.42	202.43	272.72	200.22								

ASTM-TBP correlation data from Edmister method.

TBP VS ASTM 50% B.P

Products	Correlation
Coke wt%	$0.05356 \times \text{CONV} - 0.18598 \times \text{API} + 5.966975$
LCO LV%	$0.0047 \times \text{CONV}^2 - 0.8564 \times \text{CONV} + 53.576$
Gases wt%	$0.0552 \times \text{CONV} + 0.597$
Gasoline LV%	$0.7754 \times \text{CONV} - 0.7778$
iC ₄ LV%	$0.0007 \times \text{CONV}^2 + 0.0047 \times \text{CONV} + 1.40524$
nC ₄ LV%	$0.0002 \times \text{CONV}^2 + 0.019 \times \text{CONV} + 0.0476$
$C_4^= LV\%$	$0.0993 \times \text{CONV} - 0.1556$
C ₃ LV%	$0.0436 \times \text{CONV} - 0.8714$
$C_3^= LV\%$	$0.0003 \times \text{CONV}^2 + 0.0633 \times \text{CONV} + 0.0143$
HCO	100 – CONV – (LCO LV%)