Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Aircraft system& Maintenance(ASEG344)

Semester: V

Programme: B-Tech ASE Time: 03 hrs.

Max. Marks: 100

Instructions: Make use of *sketches/plots* to elaborate your answer. The Question Paper contain 3 Sections-Section A, B and C

SECTION A $(5 \times 4 = 20 \text{ Marks})$

S. No.		Marks	CO
Q 1	Draw temperature Vs moisture content of Indirect Evaporative cooling system.	5	CO3
Q 2.	Write a short note on additives and inhibitors used in Jet fuels.	5	CO3
Q 3.	What is the function of VOR? Explain with suitable sketch.	5	CO1
Q 4.	What do you understand by line and base Maintenance?	5	CO4
	SECTION B (10 x 4 = 40 Marks)		
Q 5.	Draw circuit diagram of Magneto-Ignition system along with working and application in aircraft.	10	CO3
Q 6.	How Inspection of Aircraft and its components done. Write Types of Inspection.	10	CO4
Q 7.	Distinguish aircraft Hydraulic system and pneumatic System with necessary sketches	10	CO2
	OR		
	Write function of any "Five" components of Aircraft brake system and label all components.		

Q 8.	Elaborate, communication and Navigation systems used in aircraft with neat sketch	10	CO1
	SECTION-C(20 x 2 = 40 Marks)		
Q 9.	a) Differentiate vapor-Compression Refrigeration cycle and bootstrap cycle with Schematic diagram. b) Draw P-V and T-S Diagram of Vapor compression Refrigeration cycle. Define Saturated liquid, superheated Vapor and saturated Vapor. c) Compute COP of Reverse Brayton Cycle. $COP = \{ (rp^{\gamma-1/\gamma}) - 1 \}^{-1}$ d) Discuss anti-icing Techniques used for propellers, fuel vents. OR		
	a) Steam at 100Kpa & 280K steadily enters a nozzle whose inlet area is 1.5m ² . The mass flow rate of steam through nozzle is 0.02kg/s. steam leaves the nozzle at 600Kpa with a velocity of 50m/s. Heat losses from the nozzle per unit mass of the steam are estimated to be 16KJ/kg. Specific volume and enthalpy at nozzle inlet are 0.164m ³ /kg and 3214.4KJ/kg. Determine (a) Inlet Velocity (b) The exit temperature of the steam.(Assume K.E , P.E negligible)	20	CO3
	b) Air at 100 KPa and 200K compressed steadily to 560KPa and 350 K. The mass flow rate of the air is 0.02 kg/s, and a heat loss of 16KJ/Kg occurs during process. Assuming the changes in K.E and P.E are negligible, determine the necessary power input to the compressor. $H_1 = h_{@200k} = 280$ KJ/Kg, $H_2 = h_{@350k} = 400$ KJ/Kg		
10.	 a) Enumerate types of Ignition systems used in aircrafts with necessary sketch. b) Relate principle and working of dual- magneto Ignition system c) Sketch and explain circuit diagram of dual-Magneto Ignition system. d) Write examples of starting and ignition system used in piston and Jet Engines. 	20	CO2

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Aircraft system & Maintenance(ASEG344) Programme: B-Tech ASE

Semester: V

Time: 03 hrs.

Max. Marks: 100

Instructions: Make use of *sketches/plots* to elaborate your answer. The Question Paper contain 3 Sections-Section A, B and C

SECTION A (5 \times 4 = 20 Marks)

	Marks	CO
Draw ILS Indicator marking with its components and write function of each component.	5	CO1
Differentiate Indirect and Direct Evaporative cooling system.	5	CO3
Define Weeping wing. Which type of de-icing systems are used for stall- warning sensors.	5	CO3
What do you understand by primary and zonal inspections?	5	CO4
SECTION B (10 x 4 = 40 Marks)		
Write difference between gravity feed fuel system and pressure feed fuel system.	10	CO3
Elaborate, communication and Navigation systems used in aircraft with neat diagram.	10	C01
Eaber components of an erant brake system and write its function.		CO2
	Differentiate Indirect and Direct Evaporative cooling system. Define Weeping wing. Which type of de-icing systems are used for stall- warning sensors. What do you understand by primary and zonal inspections? SECTION B (10 x 4 = 40 Marks) Write difference between gravity feed fuel system and pressure feed fuel system. Elaborate, communication and Navigation systems used in aircraft with neat	Draw ILS Indicator marking with its components and write function of each component.5Differentiate Indirect and Direct Evaporative cooling system.5Define Weeping wing. Which type of de-icing systems are used for stall- warning sensors.5What do you understand by primary and zonal inspections?5SECTION B (10 x 4 = 40 Marks)Write difference between gravity feed fuel system and pressure feed fuel system.10Elaborate, communication and Navigation systems used in aircraft with neat diagram.10

	Describe the working of Aircraft Pneumatic power system with neat diagram.		
Q 8.	What are scheduled and unscheduled maintenance practices carried out in an aircraft industry?	10	CO4
	SECTION-C(20 x 2 = 40 Marks)		1
Q 9.	a) Differentiate Bell-colemon cycle and brayton cycle with Schematic diagram. b) Draw P-V and T-S Diagram of Bell-colemon cycle. Define Saturated liquid, superheated Vapor and saturated Vapor. c) Compute COP of Bell-colemon cycle. $COP = \{ (rp^{\gamma-1/\gamma}) - 1 \}^{-1} OR$		
	a) Steam at 100Kpa & 260K steadily enters a nozzle whose inlet area is $2.5m^2$. The mass flow rate of steam through nozzle is $0.01kg/s$. steam leaves the nozzle at 500Kpa with a velocity of 40m/s. Heat losses from the nozzle per unit mass of the steam are estimated to be 18KJ/kg. Specific volume and enthalpy at nozzle inlet are $0.160m^3/kg$ and $3200.4KJ/kg$. Determine (a) Inlet Velocity (b) The exit temperature of the steam.(Assume K.E, P.E negligible)		
	b) Air at 100 KPa and 220K compressed steadily to 560KPa and 330 K. The mass flow rate of the air is 0.01 kg/s, and a heat loss of 18KJ/Kg occurs during process. Assuming the changes in K.E and P.E are negligible, determine the necessary power input to the compressor. $H_1 = h_{@200k} = 280$ KJ/Kg, $H_2 = h_{@350k} = 400$ KJ/Kg	20	CO3
10.	 a) Enumerate types of Ignition systems used in aircrafts with necessary sketch. b) Relate principle and working of dual- magneto Ignition system c) Sketch and explain circuit diagram of dual-Magneto Ignition system. d) Write examples of starting and ignition system used in piston and Jet Engines. 	CO2	20