Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Biomass Conversion Technology Program: M.Tech REE Time: 03 hrs. Instructions:

SECTION A

S. No		Marks	СО
Q 1	Brief the summary of pathways for cellulosic biomass conversion to liquid fuels.	4	CO1
Q 2	Explain the simplified schematic illustration of bio-refinery concept.	4	CO1
Q 3	Explain proximate and ultimate analysis of some typical biomass feedstocks.	4	CO2
Q 4	Discuss the factors affecting the ethanol fermentation.	4	CO3
Q 5	Calculate the molar rate of air supply required to achieve an air equivalence ratio of 0.3 for a wood mulch/animal waste residue having the following simplified formula of $CH_{1.6}O_{0.62}N_{0.1}S_{0.001}$.	4	CO2
	SECTION B		
Q 6	Discuss the model of a bio-based product flowchart for biomass feedstocks	10	CO3
Q 7	Discuss the design, operation and economics of the energy plantation	10	CO4
Q 8	Discuss the Gasification Chemistry and Reaction Stages with diagram (or) Discuss about the control system for gasification process based on thermal conductivity to optimize the produce gas.	10	CO3
Q9	Mass of feedstock, Organic dry matter (ODM) and Organic Matter Reduction (OMR) are 50 t/day, 13.5 t/day, 9 t/day respectively, and biogas contain 60% CH ₄ , volume of digester is 3,000 m ³ . Calculate (1) Volume of biogas produced, (2) Specific loading rate (3) Hydraulic retention time (4) Specific biogas production (5) Specific methane production	10	CO4
	SECTION-C		
Q 10	Discuss the production of different alcohols from Bio-derived Syngas with future scopes. (or)	20	C05
Q 10	Discuss the different model types of Anaerobic Digesters to produce biogas from biomass.	20	C05
Q 11	Determine Material and heat balance of a gasifier and calculate efficiencies. The analysis of various inputs and outputs are given. Input conditions (wt%) C: 79.1, H: 5, O: 6.4, N: 1.7, H2O: 1.7 A: 6.1, Temp 25°C and ashes = 9wt% of biomass @ 180°C. Output conditions gases (vol%) CO ₂ : 7, CO: 21, CH ₄ : 2.5, H ₂ : 14, N ₂ : 53, H ₂ O: 2.5 @ 670°C. Air contain RH: 80%. $P_{s}H_{2}O = 26 \text{ mm Hg} (25°C, 740 \text{ mm Hg})$. Steam is blown in at	20	CO5

Semester: I

Max. Marks: 100

	30.8 p_{sig} pressure with blast. Mean specific heat of ashes = 0.21 kcal/kg K (25 – 180°C range).	C	
Name: Enrolment No:			
Course Semest	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 er: Biomass Conversion Technology er: I		
Program: M.Tech REE Time: 03 hrs. Max. Marks: Instructions:			
	SECTION A		
S. No.		Marks	CO
Q 1	Discuss about the comparisons of Petro-refinery Vs. Bio-refinery.	4	CO1
Q 2	Describe the energy efficiency opportunities in energy sector, importance of energy efficiency and plans for achieving the target.	4	CO1
Q 3	Explain the biomass composition and list few sample biomass composition.	4	CO2
Q 4	Calculate the molar rate of air supply required to achieve an air equivalence ratio of 0.7 for a wood mulch/animal waste residue having the following simplified formula of $CH_{1,0}O_{0.32}N_{0.18}S_{0.01}$.	4	CO2
Q 5	Discuss the types of organic materials produce biogas and how does biogas help reduce effects of climate change.	4	CO3
	SECTION B		
Q 6	Explain the technology for Bio-diesel Production from Cooking and Waste Cooking Oil by Microwave Irradiation.	10	CO4
Q 7	Explain the Integration of biomass quality variability in stochastic supply chain for large-scale biofuel production system.	10	CO3
Q 8	Discuss the comparison of the four main processing technologies used for the production of platform molecules from biomass. (or)	10	CO3
Q9	Discuss the various reactors for fast pyrolysis with diagrams. A bench-scale digestion plant of mixed wastes produced the following results Reactor volume = 2 L Feedstock $COD_{inf} = 97,000 \text{ mg/L } COD_{eff} = 4,000 \text{ mg/L } Biogas$ = 1.13 m ³ /m ³ -day CH4 = 59% Daily feed rate = 55 mL. Determine the volume of CH ₄ produced per kg of waste digested Specific Methane Production (SMP).	10	CO4
	SECTION-C		
Q 10	Discuss the Comparison of biogas production from an advanced micro-bio-loop and conventional system.	20	C05
	(or)		

	Discuss Biogas production from anaerobic co-digestion of cow manure with kitchen waste with schematic diagram.		
	Determine Material and heat balance of a gasifier and calculate efficiencies. The		
Q 11	analysis of various inputs and outputs are given. Input conditions (wt%) C: 25, H: 20, O: 20, N: 20, H2O: 10 A: 5, Temp 25°C and ashes = 20 wt% of biomass @ 180°C. Output conditions gases (vol%) CO ₂ : 10, CO: 40, CH ₄ : 5, H ₂ : 20, N ₂ : 20, H ₂ O: 5 @ 670°C. Air contain RH: 80%. $P_{s}H_{2}O = 26 \text{ mm Hg} (25°C, 740 \text{ mm Hg}).$	20	CO5
	Steam is blown in at 25 p_{sig} pressure with blast. Mean specific heat of ashes = 0.21 kcal/kg K (25 – 180°C range).		