Name:						
Enrolment No:		UPES				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
End Semester Examination, December 2018						
Course	: Usage of CFD in Multidisciplina	ary Application	Semester	: III		
Course Code	: MCFD 801		Time	: 03 hrs.		
Programme	: M.Tech CFD		Max. Marks : 100			

Instructions:

- 1. The Question paper has three sections: Section A, B and C.
- 2. Section B and C have internal choices.

	SECTION A		
S. No.		Marks	CO
Q 1	Give examples of factors that may cause transition to turbulence at lower Reynolds numbers	4	CO1
2	Explain the advantages of CFD tool in automobile and aerospace industry with suitable example.	4	CO4
3	Briefly explain the followinga) SST model for Turbomachinery applicationb) Multiphase model available in fluent	4	C02
4	Discuss the powertrain and non-powertrain components of automobile and advantages to use CFD tool.	4	C04
5	Describe briefly the importance of wall function approach while using in industrial flow simulations.	4	C01
	SECTION B		
6	Discuss the selection of airfoil in turbomachinery application based on Mach number.	10	CO2
7	Explain the steps used for meshing the profile in ICEM with suitable example in details.	10	C01
8	A 10 stage axial flow compressor develops an overall pressure ratio of 8.0 with and isentropic efficiency of 0.85. The absolute velocity component of air enters the rotor at an angle of 270 to the axial direction. The axial component of velocity is constant throughout the compressor and is equal to 150 m/s. The mean blade speed is 200 m/s. If the ambient air conditions are 150C and 1 bar, determine the angle which the relative component of velocity makes with the axial direction at the exit of the rotor	10	CO3

9	Discuss the brake used in CFD tool.	cooling m	odeled in the automob	ile with all the bour	idary condition		
	Or, Describe the modeling of electric motor cooling used in the I.C engine with the temperature and heat transfer coefficient as primary boundary condition.		10	CO4			
			SECTION	N-C			
10	Describe the met boundary condition		best suited to comput	e the flow domain	for the given		
	275 mm 195 mm 195 mm 199 mm 129 mm			20	CO3		
	[Sr. No.	Parameters	Specification	1		
		1	Stage Pressure ratio	2.0			
		2	Mass flow rate	11.45 kg/s	-		
	-	3	Rotational speed Working fluid	31000 rpm Air	-		
					1		
11	preliminary design Take input data Atmospheric press Power to be gener Velocity of air at	to CFD Posure 100 K ated = 200 inlet = 8 m	KW	cuss the results out c	_		
				20	C05		
	Or						
	Explain the complete modeling of condenser for the process industry from the basic requirements to CFD analysis and discuss the results in details where the mass flow rate of steam is 100 tons per hours and specific heat at constant pressure of water is 4.17 KJ/kgK. (Assume the suitable data if required)						

Name: Enroln	Name: Enrolment No:			
Progra Instru 1.	e Code : MCFD 801 amme : M.Tech CFD ammes: The Question paper has three sections: Section A, B an	December 2018 on Semester Time Max. Marl	: III : 03 hı ks : 100	*S.
	SECTION A			
S. No.			Marks	CO
Q 1	How does CFD solver work and explain the method use	d to solve the equation	4	C05
2	Distinguish between viscous sublayer and Log layer		4	C01
3	Define the following Non-Dimensional numbers:a) Rayleigh Numberb) Prandtl Number		4	C01
4	Explain the boundary condition used in the high pressur	e fan in a CFX.	4	C03
5	Expain types of meshing and its importance.		4	C03
	SECTION B	1		
6	Explain the following in details with examplea) K- epsilon and K- omega modelb) Conformal and non conformal mesh		10	CO1
7	Explain in brief the following modelsa) zero equation modelb) one equation model		10	C04
8	An axial flow compressor of 50 percent reaction design h angles at 45 [°] and 10 [°] respectively. The compressor is t 6:1 with overall isentropic efficiency of 0.85 when inle The blade speed and axial velocity are constant through a value of 200 m/s for blade speed. Find the number of	to produce a pressure ratio of et static temperature is 37^{0} C. but the compressor. Assuming	10	CO3

	modeling , pressure ratio – 2.8, mass flow rate – 5 kg/s, temperature and pressure at inlet take as a sea level Or , Discuss the following term used in the CFD analysis. a) Rotor alone analysis b) Grid independence c) Moving reference plane d) Airfoil stacking e) Effect of changes in incidence angle SECTION C		
10	Modeled the following tractor in fluent for heavy load application. Write down all the		
10	procedure and the boundary condition with results. (Assume the suitable data).		
		20	CO4
11	Explain the procedure of aero thermal analysis through basic preliminary design to CFD Post processing of the axial compressor used in the aircraft application for the given boundary and discuss the results out come in details. (Assume the suitable data if required), Pressure ratio-8, Mass flow rate -20 kg/s Inlet temperature and pressure at sea level		
	Or,		
	Explain the complete modeling of Centrifugal pump for the process industry from the basic requirements to CFD analysis and discuss the results in details from the following boundary condition. Pressure head = 15 meter Density of fluid = 1000 kg/m ² Rotational speed = 1200 RPM (Assume the suitable data if required).	20	C03