Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: M.Tech Energy System & M.Tech Renewable Energy Engg. Course Name : Smart & Micro Grid

Semester : III Time : 03 hrs Max. Marks : 100

Course Code: EPEC 8005Nos. of page(s): 02Instructions:Clearly mer

Clearly mention any assumptions with proper justification.

SECTION A

S. No.		Marks	CO
Q 1	Explain the necessity and applications of smart Grid. Explain the various essential backbones of smart grid.	4	CO1
Q.2	Explain the role & importance of communication in smart grid. Explain the various communication techniques adopted in Smart Grid.	4	CO3
Q.3	Explain the cyber Security and its vital role in Smart Grid	4	CO3
Q.4	Explain the following:	2	CO3
	1) Define Modulation. What is the various type of digital modulation schemes?	2	CO3
	2) Why secondary of CTs are short-circuited?	2	
Q.5	A) Explain the role of CT, PT, CBs & Relays in Micro Grid?	4	CO5
	SECTION B		•
	With neat block diagram explain the 'Smart Meter' those are commercially available. As a		
	Smart Grid expert, suggest any two additional features you wish to recommend as	10	CO2
	design modifications to improvise the system operation.		
	A) Explain the importance of IT requirement in Smart Grid. What are the various	8	CO3
	issues associated with IT system and provisions to overcome these issues.		
	B) Explain the Load Dispatch and associated constrains.	2	CO1
	Explain the various initiations taken by Indian government to encourage Smart-grid. What		
	are the various policies that are floated to encourage smart grid?		
	OR	10	CO5
	Explain the various smart grid pilot projects going on in India. Give your comments on the		
	status and progress of them.		
	A) Explain the role of numeric replays in improving Power System Stability	4	CO1
	B) Explain how AT & C losses can be reduced using HVDS scheme.	4	CO4
	C) Explain the structure of Electrical power system	2	CO1
	SECTION-C		
	A) With a neat diagram, explain the Distribution automation with role and importance of each equipment/technology.	15	CO2
	B) Explain the role of Energy storage in Micro Grid	05	CO5

Duration		12-15	15-18	18-22		22-24		
kW						260		
The Electricity tari follows: Time 0 to 5.00 5.00 to 10.00 10.00 to 15.00 15.00 to 18.00 18.00 to 20.00 20.00 to 24.00 The industry has va hours a da	ff is flat tariff rate % Rate Variati Discount of 18 Premium of 59 Flat Rate Premium of 20 Critical Premiu Premium of 10	on 3% % 0% um of 30% 0%		Remark Please	note: charges a company operating 50 % c demand.	Premiur are 'Zero' g at belov of Contrac	m if is ww	

Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: M.Tech Energy System & M.Tech Renewable Energy Engg.Semester: IIICourse Name: Smart & Micro GridTime: 03 hrsCourse Code: EPEC 8005Max. Marks : 100Nos. of page(s): 02Instructions:Clearly mention any assumptions with proper justification.

SECTION A

S. No.		Marks	CO
Q 1	Explain the Load flow with emphasis on active & reactive power control on various Buses.	4	CO1
Q.2	A) Explain the difference between PCM & PSK?	2	<u> </u>
	B) Explain superiority of PWM over PAM in power line transmission?	2	CO3
Q.3	Explain the construction and working of Hall Effect Current transformer	4	CO2
Q.4	Explain the following:	0	CO4
	1) Reduction of AT & C Losses using HVDS	2 2	CO4 CO3
	2) Optical fiber communication.	2	0.05
Q.5	Explain the Role and need of Energy Storage in Micro Grid	4	CO5
	SECTION B		1
	B) Explain the construction and Working of IED (numeric replay)	5	CO2
	C) With a neat diagram explain the Role of Smart Grid in revenue collection.	5	CO1
Q.6	Explain the Architecture of Smart Micro Grid which has Remote Monitoring System	10	CO5
	Along with Electrical & Electronic infrastructure, IT infrastructure is equally important in		
	Smart Grid. Justify the statement.	4.0	
	OR	10	
	Explain the possible attacks and various measures taken to safeguard the IT infrastructure		CO3
	in Smart Grid.		
	A) Explain the need and importance of HAN, LAN, WAN in Smart Grid.	5	<u> </u>
	B) With neat diagram explain AMI.	5	CO3
	SECTION-C		
	A) With neat diagram, explain the Smart Grid provision at UPES that has been already	15	CO2
	established also explain what are the future provisions that can be incorporated in		
	the existing Smart Grid?		
	B) Explain the role of India Smart Grid Forum. Explain the various task forces and their roles	5	CO5
Des	Design and develop a strategic business unit (SBU) for the following case of a micro smart		
	grid. SBU shall give the details of tariff plan and financial balance sheet at the end of first		
	year of commencement. With a neat diagram provide the location of each of the following		
	generating plants. Case:		
A rerri	Remote village is to be electrified with a micro grid. The village is surrounded by forest, river		
	and mountains.		

er Market v						avora	ao pro	ductio	n of <i>i</i>	150 144	Vh no	r dav) Initial		
a)	a) Solar power plant of 100 kWp (average production of 450 kWh per day). Initia investment Rs. 60 Lakhs. Interest, depreciation, operation & maintenance cost 5 %														
	of investment (Without Battery backup)												.031 5 70		
b)	b) A wood gasifier, of 80 kW with initial cost of Rs.1 million. 1kg of wood able to												able to		
	produce	-									-				
	cost of Rs. 50/- per kM/tonne. Annual Interest, depreciation, labour and												ur and		
	maintenance cost 30% of initial investment.(Maximum capacity)														
c)	A wind p	ower	plant a	able to	o produ	ice 12	00 kW	h per o	day wi	th an i	nitial i	nvesti	ment of		
	Rs. 1.5				•	• •	Annua	l Inte	rest, d	epreci	ation,	oper	ation &		
	mainten														
d)	A micro							-	-		-				
	kWH pe		-									-			
	time. A		Intere	est, de	eprecia	ation,	opera	tion &	x mai	ntenar	nce co	ost 14	4 % of		
	investment.														
	e) A stand by DG set of 50 kW able to produce electricity @ Rs. 10/- per unit. stribution lines:														
Distribu															
	Distribution lines are leased @ Rs.1 Lakh per year.														
	The operation cost of lines Rs. 15,000/- per month														
	The distribution losses are 5 % of power delivered by lines.										20	CO4			
	The dail	y load	curve	is as fo	ollows:										
						10-	12-	14-	16-	18-	20-	22-			
Time of day	0-2	2-4	4-6	6-8	8-10	12	14	16	18	20	22	24			
Load (kW)	120	130	150	220	180	140	130	140	190	210	200	160	1		
															Appro. !
													-	ad access	
												1	to village	۲ <u>م</u>	rest at 2
														FO	iest at 2

River close by village

Ν