| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Course: Microprocessor based control system Semester: V <br> Programme: B. Tech. / ADE  <br> Time: 03 hrs. Max. Marks: 100 <br> Instructions: Attempt all the questions  |  |  |  |
| SECTION A |  | ( $5 \times 4=20$ ) |  |
| S. No. |  | Marks | CO |
| Q1 | Answer the following questions <br> (a) How many T-states are required for execution of OUT 80 H instruction? <br> (i) 10 <br> (ii) 13 <br> (iii) 4 <br> (iv) 7 <br> (b) Which instruction is required to rotate the content of accumulator one bit right along with carry? <br> (i) RLC <br> (ii) RAL <br> (iii) RRC <br> (iv) RAR <br> (c) Which interrupt is not level sensitive in 8085 ? <br> (i) RST 6.5 <br> (ii) RST 7.5 <br> (iii) RST 5.5 <br> (iv) INTR <br> (d) Consider the following fragment of an 8085 program <br> 2000 MVI A, 13H <br> 2002 MVI B, 23 H <br> 2004 ANA B <br> 2005 CMA <br> 2006 ANI 01H <br> 2008 OUT PORT1 <br> 200A HLT <br> The output at PORT1 is $\qquad$ | 4 | $\begin{aligned} & \text { CO1, } \\ & \text { CO2 } \end{aligned}$ |
| Q2 | Write an assembly language program with an assumption that the microprocessor is completing an RST 7.5 interrupt request, check to see if RST 6.5 is pending. If it is pending, enable RST 6.5 without affecting any other interrupt; otherwise, return to the main program. | 4 | CO4 |
| Q3 | Explain the principle of operation of combustion knock sensor with suitable diagram. | 4 | CO5 |
| Q4 | Determine the primary and foldback memory address range of the 8155 and explain the decoding logic for the circuit shown in figure 1. | 4 | CO3 |


|  | Figure 1 |  |  |
| :---: | :---: | :---: | :---: |
| Q5 | Explain how the matrix keyboard and multiplexed display can be interfaced with the microprocessor using 8279 IC. | 4 | CO4 |
|  | SECTION B |  | $4=40)$ |
| Q6 | Write an assembly language program to search for number A9H from memory 2000 H to 2010 H . If found store the number in memory location 3005 H . | 10 | CO2 |
| Q7 | Explain the following terms: <br> (a) Absolute and Partial Decoding <br> (b) Magnetic memory <br> (c) Hardware and software data transfer schemes <br> (d) Burst mode and Cycle stealing technique of DMA data transfer | 10 | CO3 |
| Q8 | Define engine management system. With respect to automated vehicle explain the principle of operation of electromagnetic and exhaust gas oxygen sensor with suitable diagram. | 10 | CO5 |
| Q9 | (a) Write a BSR control word subroutine to set bits PC7 and PC3 and reset them after 10 ms . Use the schematic in figure 2. | 10 | CO4 |


|  | OR <br> (b) Draw and explain the architecture of 8254 programmable interval timer. Discuss the format of control word register. |  |  |
| :---: | :---: | :---: | :---: |
|  | SECTION-C | ( $2 \times 20=40$ ) |  |
| Q10 | (a) Design a railway crossing signal controller by writing a program which provide the given on/off time to two crossing lights (Green, Red) and two pedestrian signs (WALK and DON'T WALK). The signal lights and signs are turned on/off by the data bits of an output port as shown below: <br> The train and pedestrian flow are in the opposite direction; the pedestrian should cross the railway crossing when the Green light is on. <br> (b) Write an assembly language program with algorithm to find sum of ten numbers stored in memory location starting from 3000 H . Store the result in memory location 6500 H . | 20 | CO2 |
| Q11 | (a) Draw and analyze the timing diagram of the following set of instructions. Also identify their addressing modes. <br> LXI H, 2005H <br> MOV A,M <br> (b) Write an assembly language program to count from 0-9 with a two second delay between each count. Write a service routine at 2050 H to find 2's complement of a 16 bit number. | 20 | $\begin{aligned} & \text { CO1, } \\ & \text { CO4 } \end{aligned}$ |


| Name: | Cns |  |
| :--- | :--- | :--- | :--- |
| Enrolment No: |  | CS |


| Cours <br> Progra <br> Time: <br> Instru | \left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES  <br> End Semester Examination, December 2018 $\right)$ Semester: V | 100 |  |
| :---: | :---: | :---: | :---: |
|  | SECTION A |  | 20) |
| S. No. |  | Marks | CO |
| Q1 | Answer the following questions <br> (a) Which of the following instruction is not possible in 8085 ? <br> (i) POP PSW <br> (ii) POP B <br> (iii) POP D <br> (iv) POP 30H <br> (b) In Intel 8085 microprocessor SIM instruction stands for $\qquad$ and <br> RIM instruction stands for $\qquad$ <br> (c) Temporary registers in 8085 are <br> (i) B and C <br> (ii) D and E <br> (iii) H and L <br> (iv) W and Z <br> (d) In Intel 8085, which is the first machine cycle of an instruction? <br> (i) An op-code fetch cycle <br> (ii) A memory read cycle <br> (iii) A memory write cycle <br> (iv) An I/O read cycle <br> (e) In 8085 microprocessor, the RST5 instruction transfer program execution to which of the following location <br> (i) 0020 H <br> (ii) 0028 H <br> (iii) 0018 H <br> (iv) 0019 H | 4 | $\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2 \end{aligned}$ |
| Q2 | Determine the memory address range for the circuit shown in figure 1. | 4 | CO3 |
| Q3 | Write an assembly language program $t$ Figure 1 complement of an 8 bit number which is present at FC 50 H and store the result in FC 52 H . Microprocessor is moving in a endless loop while executing the program which is being interrupted by applying a rising pulse at RST7.5 terminal manually. | 4 | CO4 |
| Q4 | Explain the principle of operation of optical sensor and discuss how it measure the | 4 | $\mathrm{CO5}$ |


|  | speed of automated vehicle. |  |  |
| :---: | :---: | :---: | :---: |
| Q5 | Draw and explain the architecture of 8251 USART. | 4 | CO 4 |
|  | SECTION B | $0 \times 4=40)$ |  |
| Q6 | Write an assembly language program with algorithm to find sum of ten numbers stored in memory starting from 3000 H . Store the result in memory location 6005 H . | 10 | CO2 |
| Q7 | Explain how the temperature of an automated vehicle can be controlled using sensors and actuators. Discuss in detail the principle of operation of sensors and actuators used in the vehicle. | 10 | CO5 |
| Q8 | (a) Write a BSR control word subroutine to set bits PC6 and PC2 and reset them after 5 ms . Use the schematic in figure 2. <br> (b) Write instructions to generate a pulse every 50 microsecond from counter 0 with reference to figure 3. | 10 | CO4 |
| Q9 | Explain the following terms: <br> (a) Serial and Parallel mode of data <br> (b) Flash memory <br> (c) Priority Encoder <br> (d) Pending Interrupt | 10 | $\begin{aligned} & \mathrm{CO}, \\ & \mathrm{CO} 4 \end{aligned}$ |
|  |  | ( $2 \times 20=40$ ) |  |
| Q10 | (a) Write an assembly langua $\overline{\overline{I D P}}$ proe $\overline{\overline{R D}} \quad$ OUT 0 <br> (b) Write an assembly language program to count from $0-5$ with a delay of 2 second between each count. Write a service routine to flash A5 and 5A four times when the program is interrupted with one second delay between each flash. | 20 | Figure 3 <br> CO2 |
| Q11 | (a) Write an assembly language program with algorithm to control a railway crossing signal that has two alternately flashing red lights, with a 5 -min delay on time for each light. <br> (b) Draw and analyze the timing diagram of the following instruction and identify | 20 | $\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2 \end{aligned}$ |

its addressing mode.

