Name: Enrolment No:			
Programme: B.Tech CE+RP Semester: V Course: Mass Transfer-I Time: 03 hrs. Course Code: CHEG 214 Max. Marks: 100 Instructions: In case of data missing make necessary assumptions			
SECTION A (5X12=60)			
S. No.	Attempt all questions	Ma rks	CO
Q 1	Define the following: i) stage efficiency ii) molar average velocity iii) weeping iv) entrainment v) chemical equilibrium	12	$\begin{gathered} \text { CO1 } \\ \& \\ \text { CO5 } \end{gathered}$
Q2	Oxygen is diffusing through a stagnant gas mixture containing 50% methane, 30% hydrogen and 20% carbon dioxide by volume. The total pressure is $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and the temperature is 20 ${ }^{\circ} \mathrm{C}$. The partial pressure of oxygen at two planes 5 mm apart are 13×10^{3} and $6.5 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$ respectively. Estimate the rate of diffusion of oxygen. At $0^{\circ} \mathrm{c}$ and at 1 atm , the diffusivities of oxygen with respect to methane, hydrogen and carbon dioxide are: $\mathrm{D}_{\mathrm{O} 2-\mathrm{CH} 4}=0.184 \mathrm{~cm}^{2} / \mathrm{s}, \mathrm{D}_{\mathrm{O} 2}-$ $\mathrm{H}_{2}=0.690 \mathrm{~cm}^{2} / \mathrm{s}$, and $\mathrm{D}_{\mathrm{O} 2-\mathrm{CO} 2}=0.139 \mathrm{~cm}^{2} / \mathrm{s}$	12	CO1
Q 3	Explain the procedure for determination of number of ideal stages for steady state cross current contact.	12	CO3
Q 4	Discuss differential distillation in detail. Also, derive Raleigh's equation for binary mixture.	12	CO 4
Q 5	Differentiate between tray towers and packed towers.	12	CO5
SECTION B (2X20=40)			
	Attempt any two of the following		
Q 6	A stream of aqueous methanol having $45 \mathrm{~mol} \% \mathrm{CH}_{3} \mathrm{OH}$ is to be separated into a top product having 96 mole\% methanol and a bottom liquid with 4% methanol. The feed is at its bubble point and the operating pressure is 101.3 kPa . A reflux ratio of 1.5 is suggested. (a) Determine the number of ideal trays (b) Find the number of real trays if the overall tray efficiency is 40%. On which real tray should the feed be introduced? The equilibrium and bubble point data for the methanol-water system at 101.3 kPa are given below:	20	CO 4

