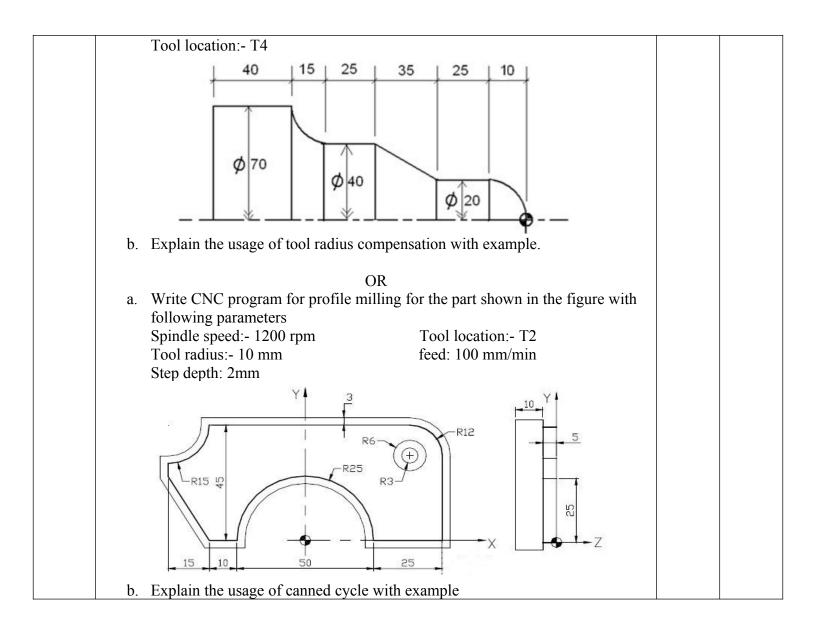
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018


Course: Manufacturing Technology II Programme: B. Tech Mechanical/Mechanical with spcl. Course Code: MHEG 232

Semester: V Time: 03 hrs. Max. Marks: 100

Instructions: Be specific, precise and neat with your work. SECTION A

S. No.		Marks	CO					
Q1	A stepper motor having resolution 1.2° is driving the lead screw of a CNC machine. The lead screw has pitch of 1.5 mm. Calculate the basic length unit for the machine.	4	CO3					
Q2	Derive the expression for shear strain in metal cutting.	4	CO2					
Q3	Derive the expression for average chip thickness in milling operation.	4	CO2					
Q4	Differentiate between open and close loop control system in CNC.	4	CO2					
Q5	State the advantages of Non-Traditional Machining processes.							
	SECTION B	<u> </u>						
Q6	Derive the expressions for the following with neat Merchant Circle Diagram. Provided that thrust force and cutting forces be measured experimentally through dynamometer. a. Shear Force and Normal to shear force b. Friction Force and Normal force OR Estimate the time required to machine a cast iron surface 250 mm long and 150 mm wide on a shaper with cutting to return ratio of 3:2 under following conditions. Cutting speed 10 m/min Feed 1 mm/stroke Clearance length 25mm Available strokes on shaper are: 12, 24, 48, 72 strokes per minute. Also determine the MRR if depth of cut is 2 mm.	10	CO2					
Q7	Explain linear interpolation with the help of Simple DDA algorithm.	10	C01					
Q8	A gear with 69 teeth need to be produced on milling machine using dividing head with following plates with respective no. of holes.	10	CO3					

	Plate No. 1	15	16	17	18	19	20				
	Plate No. 2	21	23	27	29	31	33	1			
	Plate No. 3	37	39	41	43	47	49				
	Suggest the Procedure for a. Simple Indexing b. Compound Indexing										
Q9	Derive the expression for shear plane angle in terms of rake angle and chip thickness ratio with a neat diagram.									10	CO2
	Tutto with a nea	t diagram	1.	S	SECTIC	N-C					
Q9	 a. Composition of a Nickel super alloy is as follows: Ni = 70.0%, Cr = 20.0%, Fe = 5.0% and rest Titanium. Calculate rate of dissolution if the area of the tool is 1500 mm² and a current of 2000 A is being passed through the cell. Use the following table 								f the		
	Elemer		Atomic Weight(g/mol)			Density(g/cm ³)		Valency			
	Ni		58.71			8.9 7.86 7.19		2 2 2			
	Fe		55.85		7.8						
	Cr		51.99		7.19						
	Ti		47.9	4.5	4.51		3		20		
	 b. In an EDM operation, with R-C circuit, following data is available Supply voltage = 80 V Breakdown voltage = 60 V Resistance (R) = 12 ohms Percentage of discharge energy available for material removal= 20% Calculate the time required to drill a square hole of side 10 mm in a steel work p having thickness of 20mm. Also calculate the MRR. Specific energy for melting steel is 2.3J/mm³ 									iece	CO3
Q10	a. Write part program for profile turning the part shown in the figure in									20	CO4
	incremental programming mode.Spindle speed:- 1000 rpmfeed:- 0.1 mm/revolution										CO2

