Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Reservoir Engineering Programme: B.Tech APE GAS Semester: V

Time: 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory. There is no overall choice. However, internal choice has been provided. You have to attempt only one of the alternatives in all such questions.

SECTION A

S. No.		Marks	CO
1	"When a wetting and a non-wetting phase flow together in a reservoir rock, each phase follows separate and distinct paths." Justify and explain this statement with the help of a graph.	4	CO2
2	The reservoir fluid has an oil formation volume factor of 1.552 bbl/STB at Pi = 5000 psia and 1.620 bbl/STB at Pb =3000 psia. If the reservoir produced 900000 STB of oil when the pressure dropped to 3000 psia, calculate the initial oil in place.	4	CO6
3	Elaborate the different categories of reserve. Explain in brief about proven reservoir.	4	CO6
4	The capillary pressure curves for three different reservoir rocks are shown in the following figure. Rank the rock type from higher to lower permeability	4	CO2
5	The phase diagram of an oil reservoir is characterized by the quality lines which are closer to the bubble point curve. Identify the type of the above mentioned reservoir and define its properties. How will the phase behavior change with decrease in pressure?	4	CO3
	SECTION B		

6	A volumetric gas reservoir has the following production history. The following data is also available: $\varphi = 13\%$ Swi = 0.52 A = 1060 acres h = 54 ft. T = 164°F Calculate the gas initially in place volumetrically and from the MBE.					10	CO6
	Time t (years)	Reservoir pressu (psia)	re Z	Cumulative production ((MMMscf)	Бр		
	0	1798	0.869	0			
	0.5	1680	0.870	0.96			
	1	1540	0.880	2.12			
	1.5	1428	0.890	3.21			
	2	1335	0.900	3.92			
7	a. Cricon b. Water	Write short notes on the following:					CO1
8	"The decline-curve analysis technique is based on the assumption that past production trends and their controlling factors will continue in the future and, therefore, can be extrapolated and described by a mathematical expression." Elaborate the conditions which must be considered in production decline curve analysis. Also illustrate the types of rate decline behavior.				d, 10	CO6	
9	State the prin	nary natural drive indic pected range of percent	es encounter	red in a typical	l petroleum reservo	^{vir} 10	CO5
10	field of temp	s data is presented belo perature 120°F. Calcul	late z factor	l sample of a r r from experin			CO3
	pressure where gas was liberated by using gas equation.						
	SI No		oil +gas volume		Gas Volume		
		Pressure		oil volume	at STP		
		Psi	CC 70.004	CC	CC		
		3000	78.331	1.4758	1179.258		
	2	2500	75.540	1.4232	1147.377		
	3	2000	71.499	1.3471	875.3058		
	4	1500	69.387	1.3073	957.3795		
	5	1000	67.430	1.2704	913.6537		
	67	500	65.559	1.2352	882.1962		

		Also calculate z factor by using gas formation volume factor and compare the value of z factor calculated by two different methods		
11	A	Derive an expression starting from Darcy's law in cylindrical geometry for the steady state inflow of slightly compressible fluid into a vertical well. Assume that only single fluid phase is flowing under isothermal condition.	20 (10+10)	CO4
	В	Assuming steady-state flow and incompressible fluid, calculate the oil flow rate under the following conditions:		
		pe = 2500 psi		
		pwf = 2000 psi		
		re = 745 ft		
		rw = 0.3 ft		
		$\mu o = 2 cp$		
		Bo = 1.4 bbl/STB		
		h = 30 ft		
		k = 60 md		
		OR		
	A	Starting from Darcy's law in cylindrical geometry derive an expression for the steady state inflow of incompressible fluid into a vertical well. Assume that only single fluid phase is flowing under isothermal condition.		
	В	An incompressible fluid flows in a linear porous media with the following properties.		
		L = 2500 ft		
		h = 30 ft		
		width = 500 ft		

k = 50 md	
phi = 17%	
viscosity= 2 cp	
inlet pressure = $2100 \text{ psi } \text{Q} = 4 \text{ bbl/day}$	
density = 45 lb/ft3	
Calculate the pressure at 0.25ft, 500ft, 1000ft and 2000ft. Identify the zone where the pressure drop is maximum.	