Name:

Enrolment No:

: III

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: M.Tech (PLE) Semester
Course Name : Defect Assessment & Maintenance In Pipelines II Time

Course Name : Defect Assessment & Maintenance In Pipelines II Time : 03 hrs
Course Code : CHPL 8001 Max. Marks : 100

Nos. of page(s) :

Instructions:

SECTION A

S. No.		Marks	CO
Q 1	How do you carry out the peel test of coating on pipeline?	4	CO2
Q 2	What are the various methods used for mitigation of AC/DC interference. Explain any two methods.	4	CO3
Q 3	Explain with a suitable diagram basic principle of Magnetic Flux Leakage (MFL) and ultrasound techniques used in ILI inspection.	4	CO6
Q 4	Brief on Four levels of assessment techniques for any flow detection observed in pipeline.	4	CO5
Q5	Procedure for determination of maximum allowable longitudinal extent of corrosion	4	CO6
	SECTION B		
Q 6	What is the effect of alloying elements with base metal and desired properties achieved with it? What is carbon equivalent and weld ability? Mention how to carry out the welding of pipe with weld ability as 0.8?	10	CO1
Q 7	How do you carry out the design of CP system of a 200 km length of pipeline & ascertain the location of anode beds.	10	CO3
Q 8	What are the various properties desired to be achieved with coating application? What are the pitfalls during coating applications?	10	CO2
Q9	Draw pictorial diagram for ICCP system. How do you regulate the PSP in pipeline through CP unit? Calculate CP ground bed resistance for vertical anode beds in parallel with following data's: i. Soil or (back fill) resistivity in ohms-cms ii. Number of anodes in parallel iii. Length of back(anodes) fill in meters iv. Diameter of back fill (anodes) in meters v. Anode spacing in meters 3 meters	10	CO4

	OR Write short notes on: b) Procedure & inspection required to achieve effective field joint coating. c) Describe various methods to identify coating defects.		CO2 CO2
	SECTION-C		
Q 10	Several metal loss profiles of a corroded pipe is shown in the following sketch to examine the corroded pit interaction whether separate or interacting. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	20	CO6
	Overall flaw Separate or Conditions * Maximum Conditions Depth		
	*X =Distance of full wall thickness between metal loss a (corroded regions).	reas	

	API 5LX-52, Length: 5 miles is to be undertaken. Test pressure is 2,430 psig, and Temperature is 50F. Determine the incremental volume required by the pipe to reach from NTP to the test pressure and temperature. After 10 hours of pressure cycle, the test pressure, P has decreased to 2,422 psig and the temperature of the pipe and test water has decreased to 48F. Calculate the quantity of water to be added or drained out in the system to reach the test pressure. OR Explain Microbiologically Influenced corrosion, classification of microorganisms,	20	CO4
	BIO FOULING observed in pipelines & Prevention of MIC.		CO5