	Roll No:		
U	UPES		
UNI	VERSITY OF PETROLEUM AND ENERGY STUDIES		
End S	emester Examination, December 2018		
0	amme: B.Tech. (APE-GAS, ME, MECHATRONICS, ADE, Chemical) Semester - e Name: Mathemactics-III Max. Mar		
	e Code: MATH-2003 Duration	$\mathbf{KS} : 100$ $\mathbf{:3H}$	
No. of	page/s: 02		
Instru	ictions:		
	pt all questions from Section A (each carrying 4 marks); attempt all questions from Se	ection B (e	each
carryii	ng 10 marks); attempt all questions from Section C (each carrying 20 marks). SECTION A		
	(Attempt all questions)		
1.	Verify that $X = \begin{pmatrix} 2e^{5t} \\ e^{5t} \end{pmatrix}$ is the solution of the system $\frac{dX}{dt} = \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix} X$.	[4]	CO1
2.	Use Cauchy integral formula to evaluate $\oint_C \frac{e^{\frac{1}{z}}}{z} dz$, where the contour <i>C</i> is the circle	[4]	CO2
	z = 1 traced counterclockwise.		
3.	Use Cauchy Residue theorem to evaluate $\oint_C \frac{P(z)}{(z-1)^{15}} dz$, where $P(z) = \sum_{n=1}^{15} z^n$ and the	[4]	CO3
	contour <i>C</i> is $z = e^{i2\theta}$, $0 \le \theta \le 2\pi$.		
4.	Let C be a closed differentiable contour oriented counterclockwise and let $\int_{-\infty}^{-\infty} dx = \int_{-\infty}^{\infty} dx$	[4]	CO3
4.	$\oint_C \overline{z} dz = A \text{ where } z = x + iy. \text{ Evaluate } \oint_C (x + y) dz \text{ in terms of } A.$	[4]	05
5.	Find the particular integral of $(D^2 - 2DD' + D'^2)z = e^{x+2y}$.	[4]	CO4
	OF OPTION D		
	SECTION B (Q6-Q8 are compulsory and Q9 has internal choice)		
6.	Find the general and singular solution of Clairaut's equation $y = px - e^p$.	[10]	CO1
7.	Supose $\phi_k(t) = \begin{bmatrix} \phi_{1k}(t) \\ \phi_{2k}(t) \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \phi_{nk}(t) \end{bmatrix}$, $k = 1, 2, 3,, n$ are the solutions of $\frac{dx}{dt} = AX$. If the Wronskian $W(t_0) = 0$ at some $t_0 \in [a, b]$ then prove that ϕ_k , $k = 1, 2, 3,, n$ are linearly dependent on $a \le t \le b$.	[10]	CO1

Г

٦

8.	If $u(x,y) = \frac{1}{2}\log_e(x^2 + y^2)$, find $v(x,y)$ such that $f(z) = u(x,y) + iv(x,y)$ is analytic by using Milne Thomson method.	[10]	CO2
9.	If <i>a</i> is any complex number with $ a < 1$ and <i>C</i> is the simple closed curve $ z = 1$ oriented counterclockwise, then find the value of $\frac{(1- a ^2)}{\pi} \int_C \frac{ dz }{ z+a ^2}$ OR If $P(z)$ is a polynomial and <i>C</i> denotes the circle $ z-a = R$. What is the value of $\oint_C P(z)d\overline{z}$?	[10]	CO3
	SECTION C		
	(Q10 is compulsory and Q11 has internal choice)		
	a . Construct a linear fractional transformation that maps the points $0, -1$ and ∞ onto the points $-1, -2 - i$ and i respectively.		CO3
10.	b. Find the solution of the form $u = f_1(x) f_2(y)$ satisfying $\frac{\partial u}{\partial x} - 2 \frac{\partial u}{\partial y} - u = 0$	[10+10]	
	with $u = 6e^{-3x}$ when $y = 0$.		CO4
	a . Consider the line <i>L</i> defined by the equation $z = (1 - i)x$ (where <i>x</i> is real) which divides the <i>z</i> -plane into two symmetrical halves S_1 and S_2 . If S_1 contains the positive quadrant then find the image of S_1 under the bilinear transformation $w(z) = \frac{z-1}{z+i}$.		CO3
11.	b . A string is stretched between two fixed points at a distance <i>l</i> apart. Motion is started by displacing the string in the form $y = y_0 \sin \frac{\pi x}{l}$ from which it is released at time $t = 0$. Find the displacement at any point at a distance <i>x</i> from one end at time <i>t</i> . OR	[10+10]	CO4
	a . Consider the functions $f(z) = \frac{z^2 + \alpha z}{(z+1)^2}$ and $g(z) = \sinh\left(z - \frac{\pi}{2\alpha}\right), \alpha \neq 0$. If the residue of $f(z)$ at its pole is equal to 1, then find a point where the function		CO3
11.	 g(z) is not conformal. b. If the mid point of a string of length <i>l</i> with fixed end points x = 0 and x = <i>l</i> is taken to a small height h and released from the rest at time t = 0. Then find the displacement function y(x, t). 	[10+10]	CO4

	Roll No:			
UPES .				
UNI	VERSITY OF PETROLEUM AND ENERGY STUDIES			
End So	emester Examination, December 2018			
0	amme: B.Tech. (APE-GAS, ME, MECHATRONICS, ADE, Chemical) Semester - e Name: Mathemactics-III Max. Mar			
	e Code: MATH-2003 Duration	:3 Hi	ſS	
No. of	page/s: 02			
Instru	actions:			
Attem	pt all questions from Section A (each carrying 4 marks); attempt all questions from Section	ection B (e	ach	
carryir	ng 10 marks); attempt all questions from Section C (each carrying 20 marks). SECTION A			
	(Attempt all questions)			
1.	Show that $X = \begin{pmatrix} e^{-t} \\ -e^{-t} \end{pmatrix}$ will satisfy the system $\frac{dx}{dt} = \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix} X$.	[4]	CO1	
2.	Evaluate $\oint_C \frac{\cos\left(\frac{1}{z}\right)}{z} dz$, where the contour <i>C</i> is the circle $ z = 1$ traced	[4]	CO2	
۷.	$\int_{C} z = \frac{1}{2} \int_{C} z = $	[4]	02	
	counterclockwise, using Cauchy's integral formula			
	Evaluate $\oint_C (x - y) dz$ in terms of A, where C be a closed differentiable contour			
3.	oriented counterclockwise and let $\oint \overline{z} dz = A$ where $z = x + iv$.	[4]	CO3	
	oriented counterclockwise and let $\oint_C \overline{z} dz = A$ where $z = x + iy$. Find the particular integral of $(D^2 - 2DD' + D'^2)z = e^{x-2y}$.			
4.	Find the particular integral of $(D^2 - 2DD' + D'^2)z = e^{x-2y}$.	[4]	CO4	
	$P(z) = \frac{15}{2}$			
-	Evaluate $\oint_C \frac{P(z)}{(z-1)^{15}} dz$, where $P(z) = \sum_{n=1}^{15} z^n$ and the contour <i>C</i> is $z = e^{i\theta}$, $0 \le \theta \le 1$	F 4 3	000	
5.	4π using Cauchy's Residue theorem.	[4]	CO3	
SECTION B				
	(Q6-Q8 are compulsory and Q9 has internal choice)			
6.	Find the general and singular solution of the equation $y = 4px^2 - 2e^{2p}$.	[10]	CO1	
	If $y(y,y) = \tan^{-1}(y)$ find $y(y,y) = \tan^{-1}(y)$ for d			
7.	If $v(x,y) = \tan^{-1}\left(\frac{y}{x}\right)$, find $v(x,y)$ such that $f(z) = u(x,y) + iv(x,y)$ is analytic by using Milne Thomson method.	[10]	CO2	
	anarytic by using while Thomson method.	[≖v]		

8.	Consider the system $\frac{dx}{dt} = AX$. If $\phi_k(t) = \begin{bmatrix} \phi_{1k}(t) \\ \phi_{2k}(t) \\ \vdots \\ \vdots \\ \phi_{nk}(t) \end{bmatrix}$, $k = 1,2,3,,n$ are the solutions of this system. Then prove that if the Wronskian $W(t_0)$ vanishes at some $t_0 \in [a, b]$ then $\phi_k, k = 1,2,3,,n$ are linearly dependent on $t \in [a, b]$.	[10]	CO1	
9.	If <i>C</i> is the simple closed curve $ z = 1$ oriented counterclockwise, <i>b</i> is any complex number with $ b < 1$ then find the value of $\frac{(1- b ^2)}{\pi} \int_C \frac{ dz }{ z-b ^2}$ OR Evaluate $\oint_C P(z)d\overline{z}$ where, $P(z)$ is a polynomial and <i>C</i> denotes the circle $ z+b = R$.	[10]	CO3	
SECTION C (Q10 is compulsory and Q11 has internal choice)				
10.	a . Find the functions $f_1(x)$ and $f_2(x)$ such that $u = f_1(x) f_2(y)$ is the solution of $\frac{\partial u}{\partial x} - 4 \frac{\partial u}{\partial y} - u = 0$ with $u(x, 0) = 6e^{-3x}$.	[10+10]	CO3	
	b .Construct a bilinear transformation that maps the points $0,1$ and ∞ onto the points $-1,2 + i$ and <i>i</i> respectively.		CO4	
11.	a . Consider the line <i>L</i> defined by the equation $z = (1 - i)x$ (where <i>x</i> is real) which divides the <i>z</i> -plane into two symmetrical halves S_1 and S_2 . If S_1 contains the negative quadrant then find the image of S_1 under the bilinear transformation $w(z) = \frac{z-1}{z+i}$.		CO3	
	b . A string is stretched between two fixed points at a distance 2 <i>l</i> apart. Motion is started by displacing the string in the form $y = y_0 \sin \frac{\pi x}{2l}$ from which it is released at time $t = 0$. Find the displacement at any point at a distance x from one end at time t.	[10+10]	CO4	
	OR			

	a . Consider the functions $f(z) = \frac{z^3 + \alpha z}{(z+1)^2}$ and $g(z) = \sinh\left(z - \frac{\pi}{2\alpha}\right), \alpha \neq 0$. If the residue of $f(z)$ at its pole is equal to 6, then find a point where the function		CO3	
11.	 g(z) is not conformal. b. If the mid point of a string of length 2l with fixed end points x = 0 and x = 2l is taken to a small height h and released from the rest at time t = 0. Then find the displacement function y(x, t). 	[10+10]	CO4	