Name: Enrolment No:			
Course: MATHEMATICS III Semester: III Programme: B. Tech. APUP,ASE,ASEA,ECE,EL,PSE,FSE,GI,GSE,MINING Course Code: MATH 2001 Time: 03 hrs. Instructions: Attempt all questions.			
SECTION A(Attempt all questions)			
S. No.		Marks	CO
Q1	Solve $y_{n+2}-4 y_{n+1}+4 y_{n}=2^{n}$	4	CO1
Q2	Find the series solution of $y^{\prime}-2 x y=0$	4	CO2
Q3	Expand $\frac{1}{z^{2}-3 z+2}$ for $0<\|z\|<1$.	4	CO4
Q4	If $f(z)$ and $f(z)$ are both analytic then show that $f(z)$ is constant.	4	CO 3
Q5	Evaluate $\int_{c}^{\square} \frac{z-1}{(z-1)^{2}(z-2)} d z$, where c is $\|z\|=1$.	4	$\mathrm{CO5}$
SECTION B(Q6,Q7,Q8 are compulsory and Q9 and Q10 have internal choice)			
Q6	Show that the transformation $w=\frac{5-4 z}{4 z-2}$ transforms the circle $\|z\|=1$ into a circle of radius unity in w-plane.	8	CO3
Q7	Prove the Rodrigues formula $P_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.	8	CO2
Q8	Solve the difference equation $y_{n+2}-5 y_{n+1}+6 y_{n}=2$ by the generating function method with initial conditions $y_{0}=1$ and $y_{1}=2$.	8	CO1
Q9	Evaluate using contour integration $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta$ $\int_{0}^{\infty} \frac{\sin x d x}{x\left(x^{2}+a^{2}\right)} d x$	8	CO5

Q10	Solve $\begin{aligned} & \left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \cos x \\ & \left(D^{2}+2 D D^{\prime}+D^{\prime 2}\right) z=2 \cos y-x \sin y \end{aligned}$	8	CO6
SECTION-C(Q11a,Q11b are compulsory and Q12 has internal choice)			
Q11 a	Expand $\frac{(z-2)(z+2)}{(z+1)(z+4)}$ for i. $\|z\|<1$ ii $1<\|z\|<4$	10	CO4
Q11b	Apply the calculus of residues to evaluate the integral $\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$ where $(a>b>0)$.	10	CO5
Q12	A tightly stretched flexible string has its end fixed at $x=0$ and $x=l$. At time $t=0$, the string is given a shape defined by $F(x)=\mu x(l-x)$, where μ is a constant, and then released. Find the displacement of any point x of the string at any time $t>0$. OR The ends A and B of a rod 20 cm long have the temperature at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until steady state prevails. The temperature of the ends are changed to $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Find the temperature distribution in the rod at time t.	20	CO6

| Name: | |
| :--- | :--- | :--- |
| Enrolment No: | es |

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: MATHEMATICS III
Programme: B. Tech. APUP,ASE,ASEA,ECE,EL,PSE,FSE,GI,GSE,MINING Time: 03 hrs.
Instructions: Attempt all questions.

SECTION A(Attempt all questions)			
S. No.		Marks	CO
Q1	Solve $y_{n+2}-6 y_{n+1}+9 y_{n}=2^{n}$.	4	CO1
Q2	Find the ordinary and singular points of the equation $(1-x)^{2} y^{\prime \prime}-6 x y^{\prime}-4 y=0$.	4	CO2
Q3	Expand $\frac{1}{(z-2)(z-1)}$ for $0<\|z\|<1$.	4	CO4
Q4	Show that $f(z)=\log z$ is analytic everywhere except at the origin.	4	CO3
Q5	Evaluate $\int_{c}^{\square} \frac{4-3 z}{z(z-1)(z-2)} d z$, where c is $\|z\|=\frac{3}{2}$.	4	CO5
SECTION B(Q6,Q7,Q8 are compulsory and Q9-Q10 have internal choice)			
Q6	Show that the transformation $w=\frac{5-4 z}{4 z-2}$ transforms the circle $\|z\|=1$ into a circle of radius unity in w-plane.	8	CO3
Q7	Obtain the series solution of $2 x(1-x) y^{\prime \prime}+(1-x) y^{\prime}+3 y=0$	8	CO2
Q8	Solve the difference equation $y_{n}-2 y_{n-1}-3 y_{n-2}=0, n \geq 2$ by the generating function method with initial conditions $y_{0}=3$ and $y_{1}=1$.	8	CO1
Q9	Evaluate using contour integration. $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta$ OR	8	CO5

	$\int_{0}^{\infty} \frac{\cos m x d x}{\left(x^{2}+1\right)^{2}} d x, m>0$		
Q10	Solve $\left(D+3 D^{\prime}\right)\left(D-2 D^{\prime}\right) z=y \cos x$ OR $\left(D+D^{\prime}\right)^{2} z=2 \cos y-x \sin y$	8	CO6
SECTION-CQ11a,Q11b are compulsory and Q12 has internal choice)			
Q11 a	Expand $\frac{z^{2}-4}{(z+1)(z+4)}$ for i. $\|z\|<1$ ii $1<\|z\|<4$	10	$\mathrm{CO4}$
Q11b	Apply the calculus of residues to evaluate the integral $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x$.	10	$\mathrm{CO5}$
Q12	A tightly stretched string with fixed end points $x=0$ and $x=\pi$ is initially in a position given by $y=x, 0<x<\pi$. If it is released from rest from this position, find the displacement $y(x, t)$. OR The ends A and B of a rod 20 cm long have the temperature at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until steady state prevails. The temperature of the ends are changed to $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Find the temperature distribution in the rod at time t.	20	CO6

