Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: MATHEMATICS III

Programme: B. Tech. APUP, ASE, ASEA, ECE, EL, PSE, FSE, GI, GSE, MINING

Time: 03 hrs.

Course Code: MATH 2001

Semester:

Ш

Max. Marks: 100

Instructions: Attempt all questions.

SECTION A
(Attempt all questions)

S. No.		Marks	CO
Q1	Solve $y_{n+2}-4y_{n+1}+4y_n=2^n$	4	CO1
Q2	Find the series solution of $y'-2xy=0$	4	CO2
Q3	Expand $\frac{1}{z^2 - 3z + 2}$ for $0 < z < 1$.	4	CO4
Q4	If $f(z)$ and $f'(z)$ are both analytic then show that $f(z)$ is constant.	4	CO3
Q5	Evaluate $\int_{c}^{\Box} \frac{z-1}{(z-1)^2(z-2)} dz$, where c is $ z =1$.	4	CO5
	SECTION B		
	(Q6,Q7,Q8 are compulsory and Q9 and Q10 have internal choice)	,	
Q6	Show that the transformation $w = \frac{5-4z}{4z-2}$ transforms the circle $ z =1$ into a circle of radius unity in w-plane.	8	CO3
Q7	Prove the Rodrigues formula $P_n(x) = \frac{1}{n! 2^n} \frac{d^n}{dx^n} (x^2 - 1)^n$.	8	CO2
Q8	Solve the difference equation $y_{n+2}-5y_{n+1}+6y_n=2$ by the generating function method with initial conditions $y_0=1$ and $y_1=2$.	8	CO1
Q9	Evaluate using contour integration $\int_{0}^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta$ OR $\int_{0}^{\infty} \frac{\sin x dx}{x(x^2 + a^2)} dx$	8	CO5

Q10	Solve		
	$(D^2 + DD' - 6D'^2)z = y\cos x$		
	OR	8	CO6
	$(D^2 + 2DD' + D'^2)z = 2\cos y - x\sin y$		
	SECTION-C		•
	(Q11a,Q11b are compulsory and Q12 has internal choice)		
Q11 a	Expand $\frac{(z-2)(z+2)}{(z+1)(z+4)}$ for i. $ z < 1$	10	CO4
Q11b	ii 1< z <4		
QIIO	Apply the calculus of residues to evaluate the integral $\int_{-\infty}^{\infty} \frac{\cos x dx}{(x^2 + a^2)(x^2 + b^2)}$ where $(a > b > 0)$.	10	CO5
Q12	A tightly stretched flexible string has its end fixed at $x=0$ and $x=l$. At time $t=0$, the string is given a shape defined by $F(x)=\mu x(l-x)$, where μ is a constant, and then released. Find the displacement of any point x of the string at any time $t>0$.		
	OR	• 0	G 6 6
	The ends A and B of a rod 20cm long have the temperature at 30 °C and 80 °C until steady state prevails. The temperature of the ends are changed to 40 °C and 60 °C respectively. Find the temperature distribution in the rod at time t .	20	CO6

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2018**

Course: MATHEMATICS III Semester: III Course Code: MATH 2001

Programme: B. Tech. APUP, ASE, ASEA, ECE, EL, PSE, FSE, GI, GSE, MINING

Time: (ne: 03 hrs. Max. Marks: 100 trustions: Attempt all questions		-001
Instructions: Attempt all questions. SECTION A (Attempt all questions)			
S. No.		Marks	CO
Q1	Solve $y_{n+2} - 6y_{n+1} + 9y_n = 2^n$.	4	CO1
Q2	Find the ordinary and singular points of the equation $(1-x)^2 y'' - 6xy' - 4y = 0$.	4	CO2
Q3	Expand $\frac{1}{(z-2)(z-1)}$ for $0 < z < 1$.	4	CO4
Q4	Show that $f(z) = \log z$ is analytic everywhere except at the origin.	4	CO3
Q5	Evaluate $\int_{c}^{\Box} \frac{4-3z}{z(z-1)(z-2)} dz$, where c is $ z = \frac{3}{2}$.	4	CO5
	SECTION B (Q6,Q7,Q8 are compulsory and Q9 -Q10 have internal choice)		
Q6	Show that the transformation $w = \frac{5-4z}{4z-2}$ transforms the circle $ z =1$ into a circle of radius unity in w-plane.	8	CO3
Q7	Obtain the series solution of $2x(1-x)y''+(1-x)y'+3y=0$	8	CO2
Q8	Solve the difference equation $y_n-2y_{n-1}-3y_{n-2}=0$, $n \ge 2$ by the generating function method with initial conditions $y_0=3$ and $y_1=1$.	8	CO1
Q9	Evaluate using contour integration. $\int_{0}^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta$	8	CO5
	OR		

	$\int_{0}^{\infty} \frac{\cos mx dx}{(x^2+1)^2} dx, m > 0$			
Q10	Solve $(D+3D')(D-2D')z = y\cos x$			
	OR	8	CO6	
	$(D+D')^2 z=2\cos y-x\sin y$			
	SECTION-C Q11a,Q11b are compulsory and Q12 has internal choice)			
Q11 a	Expand $\frac{z^2-4}{(z+1)(z+4)}$ for i. $ z <1$ ii $1< z <4$	10	CO4	
Q11b	Apply the calculus of residues to evaluate the integral $\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx.$	10	CO5	
Q12	A tightly stretched string with fixed end points $x=0$ and $x=\pi$ is initially in a position given by $y=x$, $0 < x < \pi$. If it is released from rest from this position, find the displacement $y(x,t)$.			
	OR			
	The ends A and B of a rod 20cm long have the temperature at 30 $^{\circ}$ C and 80 $^{\circ}$ C until steady state prevails. The temperature of the ends are changed to 40 $^{\circ}$ C and 60 $^{\circ}$ C respectively. Find the temperature distribution in the rod at time t .	20	CO6	