Name:							
Name: Enrolment No:							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018							
Course: High Performance and Parallel Computing Applications for CFDSemester: IIIProgramme: M.Tech CFDSemester: III							
Time: 03 hrs. Max. Marks		: 100					
Instructions: Q8 is having internal choice SECTION A							
S. No.		Marks	CO				
Q 1	Define the following terms						
	1. Task:						
	2. MISD:	5	CO1				
	3. FPGA:	U	001				
	4. Parallel Execution:						
	5. Granularity:						
Q 2	Explain the following terms to designing a parallel program						
	1. Bottlenecks						
	2. Coarse Grain Parallelism	10	CO1				
	3. Types of synchronization	10	001				
	4. Scalability						
	5. Uniform Memory Access						
Q 3	Explain about the Open MP? How it used and what are the platforms that it is	5	CO4				
	applicable for Parallel Coding? What are its advantages and disadvantages? SECTION B						
	SECTION B						
Q 4	Which type of the parallel programming model is described in the given figure, explain the implementation of the parallel programming model. Give a specific						
	example where we can use this parallel programming model in CFD.						
	a.out						
	call sub1 T1 T2						
	call sub2						
	A(i)=fnc(i**2)	10	CO2				
	B(i)=A(i)*psi T4	10	001				
	B(I)=A(I)*psi end do call sub3						
	call sub4						
	··· *						
	···· · · · · · · · · · · · · · · · · ·						

Q 5	Explain the parallel processing concept below in relation to a CFD problem. Give a specific example of a CFD Numerical Method or a solution algorithm where this particular concept can be applied. prev instruct prev instruct load A(1) load A(1) load A(2) load A(n) load B(1) load B(2) load B(n) C(1)=A(1)*B(1) C(2)=A(2)*B(2) store C(n) store C(1) next instruct next instruct P1 P2 Pn	10	CO2 & CO3
Q 6	Classify each of the sorting methods in FORTRAN in view of Parallel Coding Algorithms and explain which methods are more suitable for Parallel Applications?	10	CO3
Q 7	Write the algorithm and flowchart for each sorting methods and compare the methods with each other.	10	CO3
	SECTION-C		
Q 8	(a)Explain the Amdahl's law with the help of following diagram. (5 Marks)	20	CO4

	problem instructions		
	tN t3 t2 t1		
	(Or)		
	To design a parallel programming what are the parameters we have to consider, list all of them. Take the McCormack Technique in CFD for the solution of 2D Inviscid, Incompressible Flow problem as based upon time step as an example, explain in detail about all the parameters to design a parallel program. (20 Marks)		
Q9	(a) Explain Shell Sort with an example of an array with 12 elements and show how		
	the sort works by showing the breakdown of the array in each step. (10 Marks)	20	CO3
	(b) Develop a FORTRAN code for sorting an array of 12 elements by using Circle		
	Sort Method. (10 Marks)		