Name: Enrolment No:			
Cours Progra Time: Instruc	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Finite Element Analysis (ASEG 483) Semester: me: B.Tech. Mechanical Engg. 3 hrs . Max. Marks ions: Assume any missing data. (Total pages $=4$)		
SECTION A			
S. No.		Marks	CO
Q 1	Discuss how shape functions are selected. Describe the linear and quadratic shape functions for a bar element.	4	CO2
Q 2	Describe the various approaches for handling the boundary conditions during finite element analysis.	4	CO2
Q 3	Derive the transformation matrix \mathbf{L} for converting the global coordinates into local coordinates.	4	CO3
Q 4	Consider the truss element shown in Fig. 1. The $x-$, y - coordinates of the two nodes are indicated in the figure. If $\mathbf{q}=[1.5,1.0,2.1,4.3]^{\mathrm{T}} \times 10^{-2}$ inch, determine the following: (a) the stress in the element, (b) the strain energy in the element. Fig. 1: Figure for Q. 4	4	CO3
Q 5	A portal frame is shown below in Fig. 2. Develop the global load vector for the horizontal member using only one finite element.	4	CO4

	Fig. 2: Portal frame		
	SECTION B		
Q 6	Derive the \mathbf{B} matrix for a constant strain triangle element. OR Derive the \mathbf{B} matrix for a four node quadrilateral element.	10	CO5
Q 7	For the beam loading shown in Fig. 3, develop the relation KQ = F. Apply the boundary conditions also. $\begin{gathered} \mathrm{E}=200 \mathrm{GPa} \\ \mathrm{I}=4 \times 10^{6} \mathrm{~mm}^{4} \end{gathered}$ Fig. 3: Figure for Q. 7	10	CO4
Q 8	Find the displacement at the mid-point of the rod shown in Fig. 4 using Galerkin's method.	10	CO1

	Fig.4: Figure for Q. 8		
Q 9	Analyze the equilibrium equations for a three-dimensional body.	10	CO1
SECTION-C			
Q 10	For the truss shown in Fig. 5, a horizontal load of $\mathrm{P}=4000 \mathrm{lb}$ is applied in the $\mathrm{x}-$ direction at node 2 . (a) Write down the element stiffness matrix \mathbf{k} for each element. (b) Assemble the \mathbf{K} matrix. (c) Using the elimination approach, solve for \mathbf{Q}. (d) Evaluate the stress in elements 2 and 3. (e) Determine the reaction force at node 2 in the y-direction. Fig. 5: Truss	20	CO3
Q 11	a) A plate in the form of a sector is shown in Fig. 6. Inner radius (OD) of the plate is 30 cm and the outer radius (OC) of the plate is 35 cm . Perform the meshing of the plate using four CST elements and thus develop the mathematical model. You need not to assemble the element stiffness matrices	20	$\begin{aligned} & \mathrm{CO5} / \\ & \mathrm{CO} / \\ & \mathrm{CO} 1 \end{aligned}$

