Name:							
Enrolment No:							
		CTROLEUM AND ENERGY STUDIE	S				
P		er Examination, December 2018	: I				
0	Programme Name:B.Tech Mechanical EngineeringSemesterCourse Name:PhysicsTime						
Course	5	-	Time : 03 h Max. Marks: 100				
	page(s) : 02						
	· •	are compulsory. In section B, questions 6, 7 and 8	are com	pulsory,			
-	old letters are vectors.	lestion 10 is compulsory while Q 11 have a choice.					
	value of constants are given in table.						
Quanti	ity	Values					
Magnet	tic constant (vacuum permeability) $\left(\mu_0 ight)$	$1.25 \times 10^{-6} \text{ N} \cdot \text{A}^{-2}$	$1.25 \times 10^{-6} \text{ N} \cdot \text{A}^{-2}$				
Electric constant (vacuum permittivity) (ε_0)		$8.85 \times 10^{-12} \text{ F} \cdot \text{M}^{-1}$					
Elemen	itary charge	$1.60 \times 10^{-19} \mathrm{C}$					
S. No.		SECTION A	Ma				
5.110.			rks	CO			
Q 1	Let $\rho_{y} = (x+2y+3z) \frac{C}{3}$ in the cubica	l region $0 \le x$, y, z ≥ 1 mm and $\rho_v = 0$ outside the cube					
	<i>m</i> [°] What is the total charge contained w		4	CO2			
	what is the total charge contained w						
Q 2		earth can be assumed to be spherically symmetric an					
	approximately described by the follo measured from the center of the earth	wing equation: $T(r) = T_0 - \alpha r^2$, where r is the distance b. Calculate the gradient of T?	4	CO1			
		c .		ļ			
Q 3	Write the Maxwell's Equations with their physical significance.			CO4			
0.4			=4				
Q 4	Define the Laplacian of a scalar field $U = \rho^2 z \cos \varphi$	I. Find the Laplacian of the scalar field.	1+3	CO2			
	ο μ 2003Φ		=4				
Q 5	Explain the polarization in polar and	I nonpolar dielectrics	2+2	CO3			
		SECTION B	=4	<u> </u>			
0.6	(a) Let $V = v^2 v^2 \pi i \pi + \pi \pi \pi^2 \pi^2 \pi^2$			CO3			
Q 6	(a) Let $v = x^2y^2z$ in a region ($\varepsilon = 2\varepsilon$) defined by $-1 < x, y, z < 1$. Find the charge densit	7 5+5 =10				

	(b) If the charge travels at 10^4 y \mathbf{a}_y m/s, determine the current crossing surface $0 < x, z < 0.5, y = 1$.				
Q.7	State and prove the Poynting's theorem. Discuss the physical significance of each term in the resulting equation.				
Q 8	Define the electric fields due to continuous charge distributions. Derive the expression for the electric field due to surface charge.				
Q 9	What are boundary conditions? Prove that, in case of dielectric- dielectric medium, the tangential components of electric field is continuous and normal component of E is discontinuous at the boundary OR Region 1 (z < 0) contains a dielectric for which $\varepsilon_r = 2.5$, while region 2 (z > 0) is characterized by $\varepsilon_r = 4$. Let $\mathbf{E}_1 = -30\mathbf{a}_x + 50\mathbf{a}_y + 70\mathbf{a}_z$ V/m and find: (a) \mathbf{D}_2 (b) \mathbf{P}_2 (c) the angle between \mathbf{E}_1 and the normal to the surface.	2+4 +4= 10	CO2		
	SECTION C				
Q. 10	 [i] State the Faraday's law. Explain the variation of flux with time in cases (a) by having a stationary loop in a time-varying B field (b) by having a time-varying loop area in a static B field. [ii] A parallel-plate capacitor with plate area of 5 cm² and plate separation of 3 mm has a voltage 50 sin 10³t volt applied to its plates. Calculate the displacement current assuming ε = 2ε₀. 	2+4 +4= 10	CO4 CO5		
Q. 11	 [i] Discuss the reflection and transmission coefficient. Explain the reflection of EM wave by a perfect dielectric. Polystyrene has a relative permittivity of 2.56. If a wave is incident at an angle of θ_i =35⁰ from air to polystyrene. Calculate the angle of transmissionθ_t. [ii] Derive wave equations for electric and magnetic fields and find the velocity of an electromagnetic wave in a lossless medium. OR [i] Find the reflection coefficient and transmission coefficient of an electric field wave travelling in air and incident normally on a boundary between air and a dielectric having permiability = μ₀ and permittivity ε_r=4.74 [ii] Define the momentum carried by electromagnetic wave. Derive its expression also. 	10+ 10 = 20	CO6		

CONFEDENTIAL

Name of Examination (Please tick, symbol is given)	:	MID		END	ы	SUPPLE	NA
Name of the School (Please tick, symbol is given)	:	SOE	н	SOCS		SOP	
Programme	:	B.Tech I	Mechanical E	ngineering			
Semester	:	First Sei	mester				
Name of the Course	:	Physics					
Course Code	:	PHYS 10	005				
Name of Question Paper Setter	:	Dr Raje	Dr Rajeev Kumar Gupta				
Employee Code	:	4000004	40000040				
Mobile & Extension	:	989771	6629, 1414				
Note: Please mention additic Table/Graph Sheet etc. else i					ring exam	ination suc	h as
FOR OFFICE USE							
Date of Examination :							
Time of Examination			:				
No. of Copies (for Print)			:				

Note: - Pl. start your question paper from next page

Name: Enrolm	ont No:						
Enrolment No:							
		OLEUM AND ENERGY STUDIE	S				
Progra		xamination, December 2018 Beering Semester	: I				
0	Programme Name:B.Tech Mechanical EngineeringSemesterCourse Name:PhysicsTime						
Course	Code : PHYS 1005	Max. Mar	ks: 100				
	page(s) : 02			.1			
	uestion 9 have choice. In section C, 10 is co	ompulsory. In section B, questions 6, 7 and 8 a mpulsory and O11 have choice	are comp	uisory,			
-	old letters are vectors.	inpulsory and QTT have choice.					
3. The	value of constants are given in table.						
Quan	tity	Values					
Magne	etic Constant (Vacuum Permeability) (μ_0)	$1.25 \times 10^{-6} \text{ N} \cdot \text{A}^{-2}$					
Electri	ic Constant (Vacuum Permittivity) (\mathcal{E}_0)	$8.85 \times 10^{-12} \mathrm{F} \cdot \mathrm{m}^{-1}$					
Eleme	ntary Charge	$1.60 \times 10^{-19} \mathrm{C}$					
S. No.	1	SECTION A	25.2	60			
	Find the total shares in the volume defin	and by $0 \leq y > 1 = 0 \leq y > 1 = 0 \leq z > 1 = if 0 = 0$	Marks	CO			
Q 1	Find the total charge in the volume definition $120 x^2 y \frac{\mu C}{m^3}$.	ted by $0 \le x \ge 1m$, $0 \le y \ge 1m$, $0 \le z \ge 1m$, if $\rho_v =$	4	CO2			
Q 2	Using cylindrical co-ordinates show that: [4	C01				
Q 3	Define the Laplacian of a scalar field. Find						
	$P = 10 r \sin^2 \theta \cos \phi$		4	CO1			
Q 4	The potential field V = $2x^2yz - y^3z$ exists in a dielectric medium having $\varepsilon = 2\varepsilon_0$. Does V satisfy Laplace's equation?			CO2			
Q 5	Write Maxwell's equations for time varying field.		4	CO4			
		SECTION B		1			
Q.6	Derive the Continuity equation div $\mathbf{J} + \frac{\partial \mu}{\partial t}$	$\frac{0}{2} = 0$ and write its physical significance. Prove	10	CO5			

Q.7	Given the magnetic vector potential $\mathbf{A} = -\rho^2/4 \mathbf{a}_z$ Wb/m, calculate the total magnetic flux crossing the surface $\phi = \pi/2$, $1 \le \rho \le 2$ m, $0 \le z \le 5$ m.	10	CO3	
Q 8	[i] Calculate the value of Poynting's vector at the surface of the sun if the power radiated by the sun is 3.8×10^{26} watt while its radius is 7×10^{8} m.		CO5	
	[ii] If the average distance between the sun and the earth is 1.5×10^{11} m, show that the average solar energy incident on the earth is 2 cal/cm ²	10		
Q 9	Define the magnetic materials and explain its two properties. What is the Faraday's law? Explain it by having a time-varying loop area in a time-varying B field.			
	OR A long solenoid of diameter 0.1 m has $2x10^4$ turns per meter. At the center of the solenoid, a 100 turn coil of radius 0.01 m is placed with the axis coinciding with the solenoid axis. The current in the solenoid is decreased at a constant rate from 2A to -2 A in 0.5 seconds. Find the emf induced in the coil. Also, find the total charge flowing through the coil during this time when the resistance of the coil is $10\pi^2$ ohm.	10	CO4	
	SECTION-C			
Q. 10	[i] Explain the concept of displacement current. Show that for a conductor subject to electric field $E=E_0 \cos\omega t$, displacement current density is negligible at a frequencies less than 10^{15} c/s	40.40	CO2	
	[ii] Find the vector potential of an infinite solenoid with n turns per unit length, radius R, and current I.	10+10 = 20	CO3	
Q. 11	[i] Assume a plane wave with E=1V/m and a frequency of 300 MHz moving in a free space, impinges on a thick copper located perpendicularly to the direction of propagation. Find the value of E and H.			
	[ii] Define the electromagnetic wave. Prove that the wave equation for E and H are $\nabla^2 E = \mu \varepsilon \frac{\partial^2 E}{\partial t^2}$ and $\nabla^2 H = \mu \varepsilon \frac{\partial^2 H}{\partial t^2}$.	20		
	OR	20	CO6	
	Define the reflection and the transmission of the EM wave. Prove that for the EM wave, parallel polarization $\frac{E_r}{E_i} = \frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)}$ and for perpendicular polarization $\frac{E_r}{E_i} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t + \theta_i)}$.			