Name: Enrolment No:			
Course: PHYSICS I Semester: I Course Code: PHYS1007 Max. Marks: 100 Programme: BTech : APE-UP, APE-GAS, Chemical Time: 03 hrs. Instructions: All questions are compulsory (Q9, Q10 and Q12 have internal choice) Total pages: 2			
SECTION A			
S. No.		Marks	CO
Q1.	Describe magnetic hysteresis briefly with suitable diagram and hence define hard and soft magnetic materials	4	CO 2
Q2.	Prove that dispersive power of a plane transmission grating takes the form $\frac{d \theta}{d \lambda}=\frac{\phi}{\lambda \sqrt{1-\phi^{2}}}$, where,$\phi=\frac{m \lambda}{d}$ $\theta=$ diffraction angle,$\lambda=$ wavelength,$d=$ grating element,$m=$ orders	4	CO1
Q3.	State Heisenberg uncertainty principle. Using de Broglie relation show that $\left\|\frac{\Delta \lambda}{\lambda}\right\|=\left\|\frac{\Delta p}{p}\right\|$, the symbols have usual meanings .	4	CO3
Q4.	The area of a magnetic hysteresis loop between B and H is $125 \mathrm{~m}^{2}$. The smallest units along $\mathrm{Y}(\mathrm{B})$ and $\mathrm{X}(\mathrm{H})$ axes are $0.02 \mathrm{~Wb} / \mathrm{m}^{2}$ and $35 \mathrm{~A} / \mathrm{m}$, respectively. Determine hysteresis loss per cycle.	4	CO2
Q5.	Calculate de Broglie wavelength of a 100 KeV electron moving with relativistic speed.	4	CO 3
SECTION B			
Q6.	Explain the concept of displacement current, and describe how it helps in modifying Ampere's circuital law.	8	CO2
Q7.	Discuss photoelectric effect with characteristic properties. Calculate stopping potential for an electron moving with velocity of 0.01 c non-relativistically.	8	CO 3
Q8.	A multimode step index fiber has core and clad refractive indices of 1.52 and 1.48, respectively. Calculate V number and number of modes for the above fiber with core size 10 times the working wavelength.	8	CO1

Q9.	Discuss the phenomenon of double refraction and index ellipsoids for positive and negative crystals with net diagram. OR Discuss construction and working of RUBY LASER with net diagram.	8	CO1
Q10.	Calculate percentage uncertainty in its momentum if an electron with 5 KeV kinetic energy is measured within position uncertainty of 0.5 nm . OR Calculate the probability of finding a particle \in its third quatum state between $\frac{L}{12} i \frac{L}{2}$. The particle is trapped inside 1D potential box of length L.	8	CO3
SECTION-C			
Q11.	(a) Derive the expression for Compton shift in the form $\Delta \lambda=\lambda^{\prime}-\lambda=\frac{h}{m_{0} c}(1-\cos \phi)$ where $\phi=$ angle between scattered photon \wedge incident photon direction (b) A solid $\left(5 \times 10^{28}\right.$ atoms $\left./ \mathrm{m}^{3}\right)$ shows electronic polarizability of $10^{-40} \mathrm{~F}-\mathrm{m}^{2}$. Calculate dielectric constant of the solid assuming local field as Lorentz field.	10 10	CO3 CO2
Q12.	(a) Consider Schrodinger time independent wave equation and solve it for a trapped particle in 1D potential box of length L to obtain normalized wave function in the form $\psi_{n}(x)=\sqrt{2 / L} \sin (n \pi x / L) \text { for }, 0<x<L$ (b) Calculate total energy of an electron trapped in 3D potential box of length 5 nm (each side) in its $1^{\text {st }}$ non-degenerate quantum state. OR (a) Derive Schrodinger time independent wave equation in 1D case. (b) Calculate kinetic energy of an electron trapped in 1D potential box of length 5 nm in its $5^{\text {th }}$ quantum state. Also calculate de Broglie wavelength at this quantum state.	10 10 10 10	CO 3

Physical constants: $h=6.63 \times 10^{-34} \mathrm{~J}-s, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$

