Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: PHYSICS I Semester: I

Course Code: PHYS1007

Programme: BTech : APE-UP, APE-GAS, Chemical Max. Marks: 100

Time: 03 hrs.

Instructions: All questions are compulsory (Q9, Q10 and Q12 have internal choice)

SECTION A					
S. No.		Marks	CO		
Q1.	Describe magnetic hysteresis briefly with suitable diagram and hence define hard and soft magnetic materials	4	CO2		
Q2.	Prove that dispersive power of a plane transmission grating takes the form $\frac{d\theta}{d\lambda} = \frac{\phi}{\lambda\sqrt{1-\phi^2}}, \text{ where }, \phi = \frac{m\lambda}{d}$ $\theta = \text{diffraction angle }, \lambda = \text{wavelength }, d = \text{grating element }, m = \text{orders}$	4	CO1		
Q3.	State Heisenberg uncertainty principle. Using de Broglie relation show that $\left \frac{\Delta\lambda}{\lambda}\right = \left \frac{\Delta p}{p}\right $, the symbols have usual meanings.	4	CO3		
Q4.	The area of a magnetic hysteresis loop between B and H is 125 m ² . The smallest units along Y (B) and X (H) axes are 0.02 Wb/m ² and 35 A/m, respectively. Determine hysteresis loss per cycle.	4	CO2		
Q5.	Calculate de Broglie wavelength of a 100 KeV electron moving with relativistic speed.	4	CO3		
	SECTION B				
Q6.	Explain the concept of displacement current, and describe how it helps in modifying Ampere's circuital law.	8	CO2		
Q7.	Discuss photoelectric effect with characteristic properties. Calculate stopping potential for an electron moving with velocity of 0.01c non-relativistically.	8	CO3		
Q8.	A multimode step index fiber has core and clad refractive indices of 1.52 and 1.48, respectively. Calculate V number and number of modes for the above fiber with core size 10 times the working wavelength.	8	CO1		

			1
Q9.	Discuss the phenomenon of double refraction and index ellipsoids for positive and		
	negative crystals with net diagram. OR	8	CO1
	_	O	COI
	Discuss construction and working of RUBY LASER with net diagram.		
Q10.	Calculate percentage uncertainty in its momentum if an electron with 5 KeV kinetic		
	energy is measured within position uncertainty of 0.5 nm.		
	OR		CO3
	L. L.	8	
	Calculate the probability of finding a particle \in its third quatum state between $\frac{L}{12}$ $\stackrel{\cdot}{\iota}$ $\frac{L}{2}$		
	The particle is trapped inside 1D potential box of length L .		
	SECTION-C		1
			1
Q11.	(a) Derive the expression for Compton shift in the form		CO3
	h ,	10	003
	$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \phi)$		
	· ·		
	where ϕ = angle between scattered photon \wedge incident photon direction		
	(b) A solid $(5\times10^{28} \text{ atoms/m}^3)$ shows electronic polarizability of 10^{-40} F-m ² .	10	CO2
	Calculate dielectric constant of the solid assuming local field as Lorentz field.		
0.1.0			
Q12.	(a) Consider Schrodinger time independent wave equation and solve it for a		
	trapped particle in 1D potential box of length L to obtain normalized wave function in the form	10	
	$\psi_n(x) = \sqrt{2/L} \sin(n\pi x/L)$ for, $0 < x < L$		
	(b) Calculate total energy of an electron trapped in 3D potential box of length 5	10	
	nm (each side) in its 1 st non-degenerate quantum state.		CO3
	OR		
	(a) Derive Schrodinger time independent wave equation in 1D case.	10	
		10	
	(b) Calculate kinetic energy of an electron trapped in 1D potential box of length		
	5 nm in its 5 th quantum state. Also calculate de Broglie wavelength at this quantum state.	10	
	quantum state.		

Physical constants: $h = 6.63 \times 10^{-34} J - s$, $c = 3 \times 10^8 m/s$, $k_B = 1.38 \times 10^{-23} J/K$, $\mu_0 = 4 \pi \times 10^{-7} H/m$ $\varepsilon_0 = 8.854 \times 10^{-12} F/m$