
Name:				
Enrolment No:				
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018			
	Introduction to Robotics (ECEG7002) Semester: I			
Time: 0		: 100		
Instruct	ions: SECTION A			
	SECTION A			
S. No.		Marks	CO	
Q 1	Define dexterity for a robot configuration. Sketch the approximate workspace for the following robot. Assume that the dimensions of the base and other parts are of the robot structure are as shown.	4	CO1	
Q 2	To obtain a desired trajectory, joint 2 of the a 3-dof robot moves from an initial angle of 30° to final angle of 70° . The initial angular velocity for the motion is found to be 10deg/sec. Evaluate the necessary blending time required for the motion. Also, illustrate position, velocity and acceleration required for the trajectory of joint 2 with the help of a graph.	4	CO4	
Q 3	Derive a matrix that represents pure rotation about z axis of the robot reference frame	4	CO2	
Q 4	For a 3-dof articulated arm shown in fig, the Jacobian matrix J' is given as, $J' = \begin{bmatrix} -S_1(L_3C_{23} + L_2C_2) & -C_1(L_3S_{23} + L_2S_2) & -L_3C_1S_{23} \\ C_1(L_3C_{23} + L_2C_2) & -S_1(L_3S_{23} + L_2S_2) & -L_3S_1S_{23} \\ 0 & L_3C_{23} + L_2C_2 & L_3C_{23} \end{bmatrix}$ Discuss the conditions of singularity for the given robotic arm.	4	CO3	
Q 5	A frame B is rotated at 90° about the z axis, then translated 3 and 5 units relative to n and o axes respectively, then rotated another 90° about n axis and finally 90° about	4	CO2	

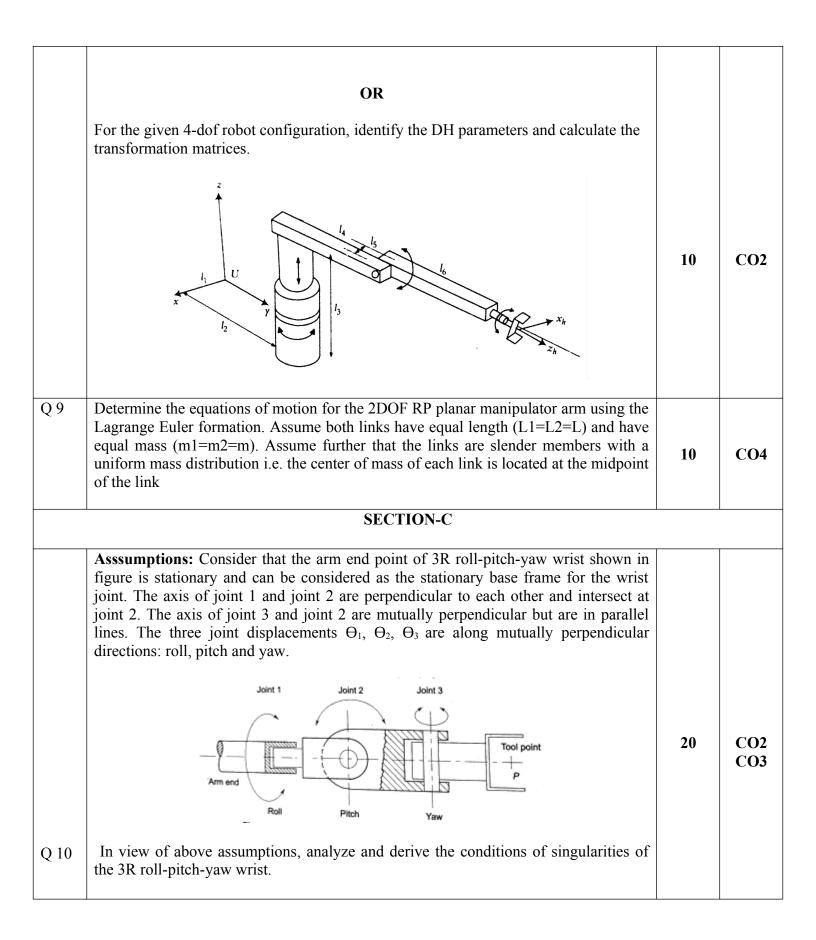
	the y axis. Calculate the new location and orientation of the frame.		
	SECTION B		
Q 6	Derive dynamic equations of a three-link purely prismatic planar 3P manipulator whose axes of joints are mutually perpendicular using Lagrangian method. Discuss the nature of the Christoffel symbols, Hijk for the robot manipulator.	10	CO4
Q 7	A 3-DOF spherical arm is designed to follow a particular trajectory starting from (9, 6, 10) to endpoint (3, 5, 8) .The robot geometry and DH parameter table representation is shown in below. Calculate the joint variables Θ_1 of the first and last joint d_3 for 3 intermediate points. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	CO2, CO4
Q 8	For a 3-dof robot shown in figure, identify the DH parameters and calculate the transformation matrices.	10	CO2

	OR		
	In view of above assumptions, for the 3R roll-pitch-yaw wrist configuration shown in figure, the position and orientation of point P in Cartesian space is given by		
	$\boldsymbol{T} = \begin{bmatrix} 0.354 & 0.866 & 0.354 & 0.106 \\ -0.612 & 0.500 & -0.612 & -0.184 \\ 0.707 & 0 & 0.707 & 0.212 \\ 0 & 0 & 0 & 1 \end{bmatrix}$		
	Interpret the feasible solutions of joint variables if the joint limits for the three joints are given as, Joint1: $-100 < \Theta_1 < 100$ Joint 2: $-30 < \Theta_2 < 70$ Joint 3: $-15 < \Theta_3 < 45$		
		20	CO2
Q 11	Derive the equations of motion for the 2DOF system using the Lagrange Euler formation. Assume both links have equal length (L1=L2=L) and have equal mass (m1=m2=m). Assume further that the links have a uniform mass distribution i.e. the center of mass of each link is located at the endpoint of the link.	20	CO4

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018


Course: Introduction to Robotics (ECEG7002)
Programme: M.Tech Automation & ROBOTICS ENGG
Time: 03 hrs.
Instructions:

Max. Marks: 100

Semester: I

SECTION A S. Marks CO No. Define dexterity for a robot configuration. Sketch the approximate workspace for the Q 1 following robot. Assume that the dimensions of the base and other parts are of the robot structure are as shown. 4 **CO1** Q 2 To obtain a desired trajectory, joint 2 of the a 3-dof robot moves from an initial angle of 30° to final angle of 70° . The initial angular velocity for the motion is found to be 10deg/sec. Calculate the necessary blending time required for the motion. Also, 4 **CO4** illustrate the position, velocity and acceleration required for the trajectory of joint 2 with the help of a graph. Derive a matrix that represents pure rotation about y axis of the robot reference frame Q 3 4 **CO2** Q 4 For a 3-dof articulated arm shown in fig, the Jacobian matrix J' is given as, $\boldsymbol{J'} = \begin{bmatrix} -S_1(L_3C_{23} + L_2C_2) & -C_1(L_3S_{23} + L_2S_2) & -L_3C_1S_{23} \\ C_1(L_3C_{23} + L_2C_2) & -S_1(L_3S_{23} + L_2S_2) & -L_3S_1S_{23} \\ 0 & L_3C_{23} + L_2C_2 & L_3C_{23} \end{bmatrix}$ **CO3** 4 Discuss the conditions of singularity for the given robotic arm.

Q 5	A frame B is rotated at 90° about the a axis , rotated at 90° about the y axis then translated 2 and 4 units relative to x and y axes respectively, then rotated another 90° about n axis. Calculate the new location and orientation of the frame.	4	CO2
	SECTION B		
Q 6	Derive dynamic equations of a three-link purely prismatic planar 3P manipulator whose axes of joints are mutually perpendicular using Lagrangian method. Discuss the nature of the Christoffel symbols, Hijk for the robot manipulator.	10	CO4
Q 7	A 3-DOF spherical arm is designed to follow a particular trajectory starting from (9, 6, 10) to endpoint (3, 5, 8) .The robot geometry and DH parameter table representation for the robot configuration is shown in below. Calculate Θ_1 and d_3 , the joint variables of the first and last joint for 3 intermediate points. $ \begin{array}{c} $	10	CO2, CO4
Q 8	For a 3-dof RRP manipulator shown in figure, identify the DH parameters and calculate the transformation matrices.	10	CO2

	OR		
	In view of above assumptions, for the 3R roll-pitch-yaw wrist configuration shown in figure, the position and orientation of point P in Cartesian space is given by		
	$T = \begin{bmatrix} 0.354 & 0.866 & 0.354 & 0.106 \\ -0.612 & 0.500 & -0.612 & -0.184 \\ 0.707 & 0 & 0.707 & 0.212 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Interpret the feasible solutions of joint variables if the joint limits for the three joints are given as, Joint1: -100< Θ_1 <100 Joint 2: -30< Θ_2 <70 Joint 3: -15< Θ_3 <45	20	CO2
Q 11	Derive the equations of motion for the 2DOF system using the Lagrange Euler formation. Assume both links have equal length (L1=L2=L) and have equal mass (m1=m2=m). Assume further that the links have a uniform mass distribution i.e. the center of mass of each link is located at the endpoint of the link.	20	CO4