Name: Enrolment No:			
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 $\right]$ Semester: I \quad Max. Marks: 100			
SECTION A			
S. No.		Marks	CO
Q 1	Define dexterity for a robot configuration. Sketch the approximate workspace for the following robot. Assume that the dimensions of the base and other parts are of the robot structure are as shown.	4	CO1
Q 2	To obtain a desired trajectory, joint 2 of the a 3-dof robot moves from an initial angle of 30° to final angle of 70°. The initial angular velocity for the motion is found to be $10 \mathrm{deg} / \mathrm{sec}$. Evaluate the necessary blending time required for the motion. Also, illustrate position, velocity and acceleration required for the trajectory of joint 2 with the help of a graph.	4	CO4
Q 3	Derive a matrix that represents pure rotation about z axis of the robot reference frame	4	CO2
Q 4	For a 3-dof articulated arm shown in fig, the Jacobian matrix J^{\prime} is given as, $J^{\prime}=\left[\begin{array}{ccc} -S_{1}\left(L_{3} C_{23}+L_{2} C_{2}\right) & -C_{1}\left(L_{3} S_{23}+L_{2} S_{2}\right) & -L_{3} C_{1} S_{23} \\ C_{1}\left(L_{3} C_{23}+L_{2} C_{2}\right) & -S_{1}\left(L_{3} S_{23}+L_{2} S_{2}\right) & -L_{3} S_{13} S_{23} \\ 0 & L_{3} C_{23}+L_{2} C_{2} & L_{3} C_{23} \end{array}\right]$ Discuss the conditions of singularity for the given robotic arm.	4	CO3
Q 5	A frame B is rotated at 90° about the z axis, then translated 3 and 5 units relative to n and o axes respectively, then rotated another 90° about n axis and finally 90° about	4	CO2

	the y axis. Calculate the new location and orientation of the frame.		
SECTION B			
Q 6	Derive dynamic equations of a three-link purely prismatic planar 3P manipulator whose axes of joints are mutually perpendicular using Lagrangian method. Discuss the nature of the Christoffel symbols, Hijk for the robot manipulator.	10	CO4
Q 7	A 3-DOF spherical arm is designed to follow a particular trajectory starting from $(9,6,10)$ to endpoint $(3,5,8)$.The robot geometry and DH parameter table representation is shown in below. Calculate the joint variables $\boldsymbol{\theta}_{1}$ of the first and last joint \mathbf{d}_{3} for 3 intermediate points.	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO4} \end{aligned}$
Q 8	For a 3-dof robot shown in figure, identify the DH parameters and calculate the transformation matrices.	10	CO2

	OR For the given 4-dof robot configuration, identify the DH parameters and calculate the Individual transformation matrices.	10	CO2
Q 9	Determine the equations of motion for the 2DOF RR planar manipulator arm using the Lagrange Euler formation. Assume both links have equal length (L1=L2=L) and have equal mass $(\mathrm{ml}=\mathrm{m} 2=\mathrm{m})$. Assume further that the links are slender members with a uniform mass distribution i.e. the center of mass of each link is located at the midpoint of the link	10	CO4
SECTION-C			
Q 10	Asssumptions: Consider that the arm end point of 3R roll-pitch-yaw wrist shown in figure is stationary and can be considered as the stationary base frame for the wrist joint. The axis of joint 1 and joint 2 are perpendicular to each other and intersect at joint 2 . The axis of joint 3 and joint 2 are mutually perpendicular but are in parallel lines. The three joint displacements $\Theta_{1}, \Theta_{2}, \Theta_{3}$ are along mutually perpendicular directions: roll, pitch and yaw. In view of above assumptions, analyze and derive the conditions of singularities of the 3 R roll-pitch-yaw wrist.	20	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$

	OR In view of above assumptions, for the 3 R roll-pitch-yaw wrist configuration shown in figure, the position and orientation of point P in Cartesian space is given by $T=\left[\begin{array}{cccc} 0.354 & 0.866 & 0.354 & 0.106 \\ -0.612 & 0.500 & -0.612 & -0.184 \\ 0.707 & 0 & 0.707 & 0.212 \\ 0 & 0 & 0 & 1 \end{array}\right]$ Interpret the feasible solutions of joint variables if the joint limits for the three joints are given as, Joint1: $-100<\Theta_{1}<100$ Joint 2: $-30<\Theta_{2}<70$ Joint 3: $-15<\Theta_{3}<45$	20	CO2
Q 11	Derive the equations of motion for the 2DOF system using the Lagrange Euler formation. Assume both links have equal length $(\mathrm{L} 1=\mathrm{L} 2=\mathrm{L})$ and have equal mass $(\mathrm{m} 1=\mathrm{m} 2=\mathrm{m})$. Assume further that the links have a uniform mass distribution i.e. the center of mass of each link is located at the endpoint of the link.	20	CO4

Name: Enrolment No:			
Cou Prog Tim Inst	\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 $\right]$Semester: I Introduction to Robotics (ECEG7002) mme: M.Tech Automation \& ROBOTICS ENGG Max. Marks $\mathbf{0 3}$ hrs. .		
SECTION A			
S. No.		Marks	CO
Q 1	Define dexterity for a robot configuration. Sketch the approximate workspace for the following robot. Assume that the dimensions of the base and other parts are of the robot structure are as shown.	4	CO1
Q 2	To obtain a desired trajectory, joint 2 of the a 3-dof robot moves from an initial angle of 30° to final angle of 70°. The initial angular velocity for the motion is found to be $10 \mathrm{deg} / \mathrm{sec}$. Calculate the necessary blending time required for the motion. Also, illustrate the position, velocity and acceleration required for the trajectory of joint 2 with the help of a graph.	4	CO4
Q 3	Derive a matrix that represents pure rotation about y axis of the robot reference frame	4	CO 2
Q 4	For a 3-dof articulated arm shown in fig, the Jacobian matrix J^{\prime} is given as, $J^{\prime}=\left[\begin{array}{ccc} -S_{1}\left(L_{3} C_{23}+L_{2} C_{2}\right) & -C_{1}\left(L_{3} S_{23}+L_{2} S_{2}\right) & -L_{3} C_{1} S_{23} \\ C_{1}\left(L_{3} C_{23}+L_{2} C_{2}\right) & -S_{1}\left(L_{3} S_{23}+L_{2} S_{2}\right) & -L_{3} S_{1} S_{23} \\ 0 & L_{3} C_{23}+L_{2} C_{2} & L_{3} C_{23} \end{array}\right]$ Discuss the conditions of singularity for the given robotic arm.	4	CO 3

Q 5	A frame B is rotated at 90° about the a axis, rotated at 90° about the y axis then translated 2 and 4 units relative to x and y axes respectively, then rotated another 90° about n axis. Calculate the new location and orientation of the frame.	4	CO2
	SECTION B		
Q 6	Derive dynamic equations of a three-link purely prismatic planar 3P manipulator whose axes of joints are mutually perpendicular using Lagrangian method. Discuss the nature of the Christoffel symbols, Hijk for the robot manipulator.	10	CO4
Q 7	A 3-DOF spherical arm is designed to follow a particular trajectory starting from $(9,6,10)$ to endpoint $(3,5,8)$. The robot geometry and DH parameter table representation for the robot configuration is shown in below. Calculate Θ_{1} and d_{3}, the joint variables of the first and last joint for 3 intermediate points.	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO4} \end{aligned}$
Q 8	For a 3-dof RRP manipulator shown in figure, identify the DH parameters and calculate the transformation matrices.	10	CO2

	OR For the given 4-dof robot configuration, identify the DH parameters and calculate the transformation matrices.	10	CO2
Q 9	Determine the equations of motion for the 2DOF RP planar manipulator arm using the Lagrange Euler formation. Assume both links have equal length ($\mathrm{L} 1=\mathrm{L} 2=\mathrm{L}$) and have equal mass $(\mathrm{ml}=\mathrm{m} 2=\mathrm{m})$. Assume further that the links are slender members with a uniform mass distribution i.e. the center of mass of each link is located at the midpoint of the link	10	CO4
SECTION-C			
Q 10	Asssumptions: Consider that the arm end point of 3R roll-pitch-yaw wrist shown in figure is stationary and can be considered as the stationary base frame for the wrist joint. The axis of joint 1 and joint 2 are perpendicular to each other and intersect at joint 2 . The axis of joint 3 and joint 2 are mutually perpendicular but are in parallel lines. The three joint displacements $\Theta_{1}, \Theta_{2}, \Theta_{3}$ are along mutually perpendicular directions: roll, pitch and yaw. In view of above assumptions, analyze and derive the conditions of singularities of the 3 R roll-pitch-yaw wrist.	20	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$

	OR In view of above assumptions, for the 3 R roll-pitch-yaw wrist configuration shown in figure, the position and orientation of point P in Cartesian space is given by $T=\left[\begin{array}{cccc} 0.354 & 0.866 & 0.354 & 0.106 \\ -0.612 & 0.500 & -0.612 & -0.184 \\ 0.707 & 0 & 0.707 & 0.212 \\ 0 & 0 & 0 & 1 \end{array}\right]$ Interpret the feasible solutions of joint variables if the joint limits for the three joints are given as, Joint1: $-100<\Theta_{1}<100$ Joint 2: $-30<\Theta_{2}<70$ Joint 3: $-15<\Theta_{3}<45$	20	CO2
Q 11	Derive the equations of motion for the 2DOF system using the Lagrange Euler formation. Assume both links have equal length ($\mathrm{L} 1=\mathrm{L} 2=\mathrm{L}$) and have equal mass $(\mathrm{m} 1=\mathrm{m} 2=\mathrm{m})$. Assume further that the links have a uniform mass distribution i.e. the center of mass of each link is located at the endpoint of the link.	20	CO4

