Name:

**Enrolment No:** 

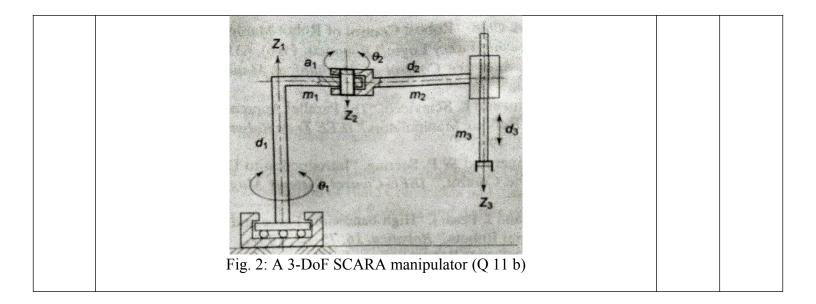


## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

**Course: Robotics and Control** 

Semester: V

Programme: B.Tech. Mechatronics (ECEG 3001) Time: 03 hrs.


Max. Marks: 100

## **Instructions:** Assume any missing data (Total pages = 3)

## **SECTION A**

| S. No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks | CO          |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| Q 1    | Describe in brief the various control schemes/strategies used for position and force control of manipulators.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4     | <b>CO</b> 4 |
| Q 2    | The arm lengths of a planar two-link manipulator having two revolute joints are 1 m each. If the joint velocities are constant at $\dot{\theta}_1 = 1$ , $\dot{\theta}_2 = 2$ , find the instantaneous velocity of the tool when $\theta_1 = \theta_2 = \frac{\pi}{4}$ .                                                                                                                                                                                                                                                                                      | 4     | CO1/<br>CO2 |
| Q 3    | Derive the rotation matrix about Z-axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4     | CO2         |
| Q 4    | Discuss the step response of a second-order system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4     | <b>CO4</b>  |
| Q 5    | Compare among the four fundamental robot arms giving at least one advantage and one disadvantage of each.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4     | CO1         |
|        | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |             |
| Q 6    | a) Derive the pseudo-inertia matrix for a two-link planar manipulator having two revolute joints. Make use of DH parameters in your derivation.                                                                                                                                                                                                                                                                                                                                                                                                               |       |             |
|        | <ul><li>OR</li><li>b) Derive the Jacobian matrix for a three-link planar manipulator having three revolute joints.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10    | CO2         |
| Q 7    | It is required to insert a peg into a hole with the help of a robot. Divide your assembly task into simple sub-tasks and hence determine the natural and artificial constraints for each sub-task.                                                                                                                                                                                                                                                                                                                                                            | 10    | CO4         |
| Q 8    | <ul> <li>A joint drive system consists of a DC servomotor with total inertia of 0.02 kg m<sup>2</sup> and bearing friction of 0.5 N/s and a gearbox with gear ratio of 32. The link inertia is 5 kg m<sup>2</sup> and the link bearing friction is 2 N/s. Determine <ul> <li>(i) the effective inertia and effective damping for the joint.</li> <li>(ii) the closed loop transfer function for a proportional controller with proportional gain K = 10.</li> <li>(iii) the unit step response .</li> <li>(iv) the steady state error.</li> </ul> </li> </ul> | 10    | CO4         |
| Q 9    | It is desired to have the first joint of a six-axis robot to move from the initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10    | CO3         |

|      | Determine the trajectory. SECTION-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|
|      | SECTION-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                     |
| Q 10 | <ul> <li>a) Consider the top view of a robotic workstation, with parts A and B, shown in Fig. 1. Suppose the centroid of part A has coordinates [6, 12, 2]<sup>T</sup> and the centroid of part B has coordinates [10, 5, 1]<sup>T</sup>.</li> <li>(i) Find the arm matrix value T<sup>pick</sup><sub>base</sub> needed to pick up part A from above grasping it along the long sides</li> <li>(ii) Find the arm matrix value T<sup>place</sup><sub>base</sub> needed to place part A on top of part B aligning the centroids and the major axes.</li> </ul> | 20 | CO2/<br>CO3/<br>CO4 |
|      | integral (PPI) control strategy. Develop the block diagram and mathematical model for PPI controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                     |
| Q 11 | a) For the two-link planar manipulator having two revolute joints, design the hybrid position force controller to follow a surface defined as $x = \cos(t); y = \sin(t)$ while maintaining a constant contact force $f_d$ with the friction surface. Draw the block diagram of the controller. (Note: <i>t</i> represents time)                                                                                                                                                                                                                              | 20 | CO2/<br>CO4         |
|      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                     |
|      | <ul> <li>b) Design a control system based upon partitioned PD control law for the three<br/>axes SCARA manipulator shown in Fig. 2. (Hint: First derive the expressions<br/>for the three joint variables.)</li> </ul>                                                                                                                                                                                                                                                                                                                                       |    |                     |

