| Name:
 Enrolment No: |
| :--- | :--- | :--- | :--- | :--- |
| UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, December 2018 |
| Course: Robotics and Control
 Programme: B.Tech. Mechatronics (ECEG 3001)
 Time: $\mathbf{0 3}$ hrs.
 Instructions: Assume any missing data (Total pages = 3) |
| SECTION A |

	position, $\theta_{0}=15^{\circ}$, to a final position, $\theta_{\mathrm{f}}=75^{\circ}$, in 3 seconds using a cubic polynomial. Determine the trajectory.		
SECTION-C			
Q 10	a) Consider the top view of a robotic workstation, with parts A and B, shown in Fig. 1. Suppose the centroid of part A has coordinates $[6,12,2]^{\mathrm{T}}$ and the centroid of part B has coordinates $[10,5,1]^{\mathrm{T}}$. (i) Find the arm matrix value $T_{\text {base }}^{\text {pick }}$ needed to pick up part A from above grasping it along the long sides (ii) Find the arm matrix value $T_{\text {base }}^{\text {place }}$ needed to place part A on top of part B aligning the centroids and the major axes. Fig. 1: Robotic workstation (Q. 10 a) b) For a robotic controller it is proposed to implement partitioned proportional integral (PPI) control strategy. Develop the block diagram and mathematical model for PPI controller.	20	$\begin{aligned} & \mathrm{CO} 2 / \\ & \mathrm{CO} / \\ & \mathrm{CO} / \end{aligned}$
Q 11	a) For the two-link planar manipulator having two revolute joints, design the hybrid position force controller to follow a surface defined as $x=\cos (t) ; y=\sin (t)$ while maintaining a constant contact force f_{d} with the friction surface. Draw the block diagram of the controller. (Note: t represents time) OR b) Design a control system based upon partitioned PD control law for the three axes SCARA manipulator shown in Fig. 2. (Hint: First derive the expressions for the three joint variables.)	20	$\begin{aligned} & \hline \mathrm{CO} 2 / \\ & \mathrm{CO} 4 \end{aligned}$

