Roll No:

11 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme: B. Tech. [ME+ME(MD)+ME(MSNT)+ME(PROE)+ME(THE)]
Semester - V
Course Name: Applied Numerical Techniques
Max. Marks:100
Course Code: MATH 305
Duration: 3 Hrs

No. of page/s: 02

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 10 marks); attempt Section C (each carrying 20 marks).

	$\frac{d y}{d x}=\frac{y-x}{y+x}$											
9.	Derive the newton Cotes formula for integration. OR The velocity (v) of a car which starts from rest is given at fixed intervals of time (t) as follows.										[10]	CO1
SECTION C												
9.A	Using Gauss Elimination Method Solve the following system of equations$\begin{aligned} & 2 x+4 y+z=3 \\ & 3 x+2 y-2 z=-2 \\ & x-y+z=6 \end{aligned}$										[10]	CO2
9.B	Apply Runge-Kutta method (fourth order) to find an approximate value of $y(0.1)$, given that$\frac{d y}{d x}=x+y$$y(0)=1 \text { with } h=0.1$										[10]	CO 3
10. A	Derive the Lagrange's interpolation formula for interpolation. OR Derive Newton's forward difference formula for interpolation.										[10]	CO1
10.B	Solve the boundary value problem defined by $y^{\prime \prime}-x=0 \quad$ and $y(0)=1, \quad y^{\prime}(1)=-1 / 2$ OR Solve the equation $y^{\prime \prime}+y=-x, 0<x<1$ and $y(0)=y(1)=0$										[10]	CO4

Roll No:
UPES
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, December 2018
Programme: B. Tech. [ME+ME(MD)+ME(MSNT)+ME(PROE)+ME(THE)] Semester - V
Course Name: Applied Numerical Techniques Max. Marks: 100
Course Code: MATH 305
Hrs
No. of page/s: 02

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 10 marks); attempt Section C (each carrying 20 marks).

Section A

1.	Show that the fixed point iteration method may not converge for some equations $f(x)=0$.with the help of an example					[5]	CO2
2.	Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ using Simpson's 3/8 rule.					[5]	CO1
3.	Discuss the method of point collocation with an example.					[5]	CO4
4.	Derive the Bessel's formula for the interpolation.					[5]	CO3
5.	Find $f(0.5)$ where					[5]	CO1
	x	0	1	2	3		
	$f(x)$	1	2	1	10		
SECTION B							
6.	Discuss the method of least squares with an example.					[10]	CO4
7.	Solve by Gauss-Jacobi method (two approximations)$\begin{aligned} & 6 x+y+z=105 \\ & 4 x+8 y+3 z=155 \\ & 5 x+4 y-10 z=65 \end{aligned}$					[10]	CO2
8.	Find the value of y for $x=0.1$ by Taylor Series method, given that $y(0)=1$ and $\frac{d y}{d x}=\frac{y-x}{y+x}$					[10]	CO3

