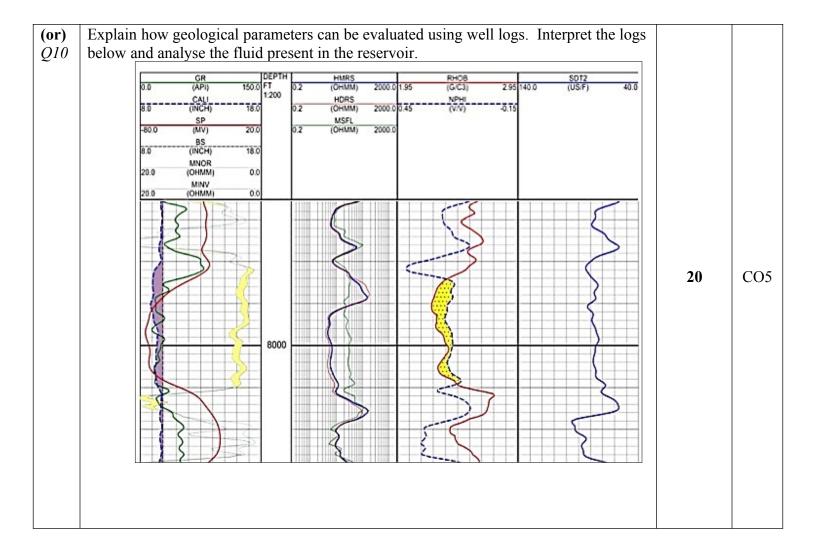
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: APPLIED GEOLOGY Semester: V

Programme: B. Tech Geoscience and Geoinformatics [GSE&GIE]


Time: 03 hrs. Max. Marks: 100

Instructions:

SECTION A [20 marks]

S. No.		Marks	CO
Q 1	Explain the applications of remote sensing in geological mapping	5	CO1
Q 2	Elaborate the significance of unconformity in establishing stratigraphic records.	5	CO2
Q 3	A limestone bed is dipping in a dam site at the rate of 1 in 4 along N15° W. Find its apparent dip along N50° W. Scale 1 unit = 1cm. State Strike.	5	CO3
Q 4	A source rock with 7wt % of TOC releases 0.05mgHC/g Rock free gases, 6.3mgHC/g Rock HC gases and 0.45 mg CO ₂ /g Rock CO ₂ gases at 422°C, 467°C and 570°C temperature respectively. Estimate the source rock in terms of oil/gas generation efficiency.	5	CO4
	SECTION B [40 marks;]		
Q 5	(a) What are the different techniques of micro facies analysis?(b) Illustrate the implication of microfossils in petroleum exploration.	5+5=10	CO2
Q 5	(OR) (a)Explain how aggradation, progradation and retrogadation might occur during relative sea-level transgression (b) Discuss hydrocarbon promising depositional systems in marine environment with reference to sequence stratigraphy.	5+5=10	CO2
Q6	(a) Explain how to quantify reworked organic matter?(b) Explain how the provenance of sediments using geochemical data?(c) Describe the importance of HI and OI. How will you calculate original HI and OI from rock eval data?	3+2+5=10	CO4
Q7	 (a) What are the principles of natural gamma log and spontaneous potential log? Explain how Natural Gamma log can be used as lithology indicator. (b) When gas replaces oil in a clean sandstone, explain how will be the Density Neutron log separation and why? (c) The void ratio (in percentage) of sandstone is 25. Calculate its porosity in percentage. 	5+2+3=10	CO5
Q8	What are 3P Oil & Gas Reserves and Why are they important? Discuss different methods of hydrocarbon reserve estimation for Original oil in place (OOIP) and	5+5=10	CO6

	original gas in place (OGIP).				
SECTION-C [40 marks]					
Q 9	The following data are given for the Hout Oil Field:				
	$ [Area = 26,700 \ acres \ Net \ productive \ thickness = 49 \ ft \ Porosity = 8\% \ Average \ Sw$				
	=45% Initial reservoir pressure, pi = 2980 psia Abandonment pressure, pa = 300				
	psia Bo at pi = 1.68 bbl/STB Bo at pa = 1.15 bbl/STB Sg at pa = 34% Sor after	10+5+5=20	CO6		
	water invasion = 20%]	10+3+3-20			
	Calculate the following:				
	1) Initial oil in place 2) Oil in place after volumetric depletion to abandonment				
	pressure 3) Oil in place after water invasion at initial pressure. Discuss your answers				
Q10	"A geological model is a spatial representation of the distribution of sediments and				
	rocks in the subsurface."				
	(a) Write the workflow of Seismic Prestack Simultaneous Inversion in multiattribute				
	analysis.				
	(b) In a clean sandstone formation, pb is the measured bulk density 2.15 gms/cc, \(\phi \) is	10+10=20	CO5		
	porosity in fraction, pf is fluid density in gm/cc and pma is matrix density for				
	appropriate lithology. If we assume of to be equal to 1gm/cc for water, then by				
	measuring bulk density of clean water bearing formations derive the porosity of the				
	rock.				

