Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Petroleum Production and Systems Design(PTEG 424)

Programme: B.Tech (APE-GAS)

Max. Marks: 100

Semester: VII

Time: 03 hrs.

Instructions: Assume appropriate data if missing. Draw graphs/diagrams wherever necessary.
SECTION A

S. No.					Marks	CO
Q 1	How the effect of wellhead backpressure on a total fluid production rate for the following given data?					
	Production	Wellhead	Tubing size,			
	rate, BLPD	pressure(psi)	(in)			
	0	50	2.38			
	1000	100	2.75		8	CO1
	2000	150	4.13		o	COI
	3000	200	6.75			
	4000	250				
	5000	300				
		350				
		400				
Q 2	Illustrate the general design procedure of heater-treater.					CO2
Q 3	Construct a typical production group gathering station flow sheet and label all the notations.					CO3
Q 4	a) Write the em b) List out the v	3+4	CO4			
				TON B		
Q 5	Distinguish various kinds of pumps and their advantages and disadvantages					CO4
Q 6	Relate and contrast vertical, horizontal and spherical separators with suitable applications.					CO5
Q 7	a) Calculate the work done in compressing 2 kg of gas (gravity = 0.65) polytropically from an initial temperature of 20°C and pressure of 700 kPa to a final pressure of				5+10	CO3
	2000 kPa. Use a polytropic exponent of 1.5. The base pressure and base temperature are 101 kPa and 15°C, respectively.					
	b) Calculate the compressor horsepower required for an adiabatic compression of					
	106 MMSCFD gas with inlet temperature of 68°F and 725 psia pressure. The					
	discharge pressure is 1305 psia. Assume the compressibility factors at suction and					
	discharge conditions to be $Z_1 = 1.0$ and $Z_2 = 0.85$, respectively, and the adiabatic					
	exponent is 1.4, with the adiabatic efficiency $\eta = 0.8$. If the mechanical efficiency of					
	the compresso	r driver is 0.	95, what BHF	is required? Calculate the outlet		

	temperature	of the gas.					
			SECTIO	DN-C			
Q 8	Design a hor Flow Rate: 2,000 bopd Operating Pr $C_D = 0.851, T$ Table-1.0						
	d, in	Gas,L _{eff}	Liquid, L _{eff}	L _{ss}	12L _{ss} /d		~~~
	16	2.5	33.5	44.7	33.5	- 25	CO5
		2.0	21.4	28.5	17.1		
	24	1.7	14.9	19.9	9.9		
	30	1.3	9.5	12.7	5.1		
	36	1.1	6.6	9.1*	3.0		
	42	0.9	4.9	7.4*	2.1		
	48	0.8	3.7	6.2*	1.6		
	 various equa a. General ea b. Assumption c. Panhandlea d. Weymout Flow rate: G Viscosity: = Gas gravity = Length = Inlet pressur Temperature 	ations. quation on of AP < 10% P e B Equation h Equation. as = 23 MMscfd, 3 cp = 0.85 7000 ft. e = 900 psi $e = 80^{\circ}F$ = 0.004, $f = 0.01$!		the following data to 0.0108 (for 6 .in fro	25	