Name:

**Enrolment No:** 



Semester: 1

Time: 03 hrs.

Max. Marks: 100

# UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course:Petroleum Transport System & Operations-1Programme:M.Tech. Pipeline Engineering

CODE: CHPL 7004

Instructions: *i*. Attempt all questions. *ii*. Missing data can be suitably assumed

| S. No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks | СО  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q1     | Define compressor ratio for a centrifugal and reciprocating compressors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5     | CO1 |
| Q2     | Differentiate between NPSH <sub>A</sub> and NPSH <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5     | CO2 |
| Q3     | Explain Line Pack volume and Line Fill Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5     | CO2 |
| Q4     | Explain the term "Adiabatic efficiency" and hydraulic balance in compressors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5     | CO3 |
|        | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |     |
| Q5     | Explain the reasons that lead to Gas Hydrates formation in Pipelines and the preventive measures that can be taken to avoid them in subsea pipelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10    | CO5 |
| Q6     | A 16 in. crude oil pipeline (0.250 in. wall thickness) having internal roughness of 0.002 inches, is 30 miles long from point A to point B. The flow rate at the inlet A is 4000 bbl. / hr. The crude oil properties are specific gravity of 0.85 and viscosity of 10 cSt at a flowing temperature of $70^{\circ}$ F. (a) Calculate the pressure required at A without any pipe loop. Assume, 50 psi, delivery pressure at the terminus B and a flat pipeline elevation profile. (b) If a 10 mile, portion CD, starting at milepost 10 is, looped with an identical 16 in. pipeline, calculate the reduced pressure at A. |       | CO1 |
| Q7     | Calculate the compressor horsepower required for an adiabatic compression of 106 MMSCFD gas with inlet temperature of 68°F and 725 psia pressures. The discharge pressure is 1305 psia. Assume the compressibility factors at suction and discharge conditions to be $Z_1 = 1.0$ and $Z_2 = 0.85$ , respectively, and the adiabatic exponent = 1.4, with the adiabatic efficiency = 0.8. If the mechanical efficiency of the compressor driver is 0.95, what BHP is required? Also, calculate the outlet                                                                                                                  | 10    | C01 |

# SECTION A

|    | temperature of the gas.                                                                 |    |             |
|----|-----------------------------------------------------------------------------------------|----|-------------|
| Q8 | Explain the reasons for the two-phase flow in pipelines. Also, explain with figures     |    |             |
|    | the different flow patterns observed in two-phase flow. Explain the Bakers Chart to     | 10 | CO5         |
|    | identify the flow pattern in multiphase flow                                            |    |             |
|    | SECTION-C                                                                               |    |             |
| Q9 | In the Figure 1, shown below, the pipeline from station A to station B is 48 miles      | 20 | COL         |
|    | long and is 18 in. in nominal diameter, with 0.281 in. wall thickness. It is,           |    | CO2,<br>CO3 |
|    | constructed of 5LX-65 grade steel. At station A, crude oil of specific gravity, 0.85    |    |             |
|    | and 10 cSt viscosity enters the pipeline at a flow rate of 6000 barrel per hour. At     |    |             |
|    | station, C (milepost-22) a new stream of crude oil with specific gravity of 0.82 and    |    |             |
|    | 3.5 cSt viscosity enters the pipeline at a flow rate of 1000 barrel per hour. The mixed |    |             |
|    | stream then continues to station D (milepost 32) where 3000 barrel per hour is,         |    |             |
|    | stripped off the pipeline. The remaining volume continues to the end of the pipeline    |    |             |
|    | at point B. (a) Calculate the pressure required at dispatch station A to deliver the    |    |             |
|    | crude oil at station B at a minimum delivery pressure of 50 psi. Also calculate the     |    |             |
|    | specific gravity and viscosity of crude oil delivered at station B. Assume elevations   |    |             |
|    | at A,C,D and B to be 100, 150, 250 and 300 feet respectively. Use, Colebrook-White      |    |             |
|    | equation for pressure drop calculation and assume pipe roughness of 0.002 in. (b)       |    |             |
|    | Calculate the BHP required to- maintain 6000 barrel per hour of flow rate at A,         |    |             |
|    | assuming 50 psi, pump suction pressure at A and 80% pump efficiency? (c) If, a          |    |             |
|    | positive displacement (PD) pump is used, to inject the stream at C, that itself         |    |             |
|    | receives the liquid at 50 psi, and has 80% efficiency what pressure and HP is           |    |             |
|    | required at C.                                                                          |    |             |
|    |                                                                                         |    |             |
|    |                                                                                         |    |             |
|    | 1000 bbl/hr 3000 bbl/hr                                                                 |    |             |
|    |                                                                                         |    |             |
|    | 6000 bbl/hr 4000 bbl/hr                                                                 |    |             |
|    |                                                                                         |    |             |
|    | A C D B                                                                                 |    |             |

|     | Figure 1                                                                                                               |    |                     |
|-----|------------------------------------------------------------------------------------------------------------------------|----|---------------------|
| Q10 | A natural gas pipeline runs 140 miles from Dadri to Panipat. The pipeline is of NPS                                    |    |                     |
|     | 16, 0.250 in. wall thickness. Through calculations, it was found that the pipeline                                     |    |                     |
|     | should not be operated at a pressure above 1200 psig. The gas specific gravity and                                     | 20 |                     |
|     | viscosity were found to be 0.6 and $8 \times 10^{-6}$ lb. per feet per second, respectively. The                       |    |                     |
|     | pipe roughness is assumed $700\mu$ inch, and the base pressure and base temperature are                                |    | CO1,<br>CO2,<br>CO3 |
|     | 14.7 psia. and 60°F, respectively. The gas flow rate is 175 MMSCFD at 80°F, and                                        |    |                     |
|     | the delivery pressure required at Panipat is 800 psig.                                                                 |    |                     |
|     | <b>a</b> ) Calculate the pressure required at Dadri to deliver the gas at Panipat at the desired pressure of 800 psig. |    |                     |
|     | b) The pipeline operator arbitrary choses to install the compressor station at the                                     |    |                     |
|     | midpoint of the pipeline. Show through calculations if the location of compressor                                      |    |                     |
|     | station at mid- point is optimum. If not, calculate the exact location of compressor                                   |    |                     |
|     | station. <b>Assume</b> <i>Z</i> <b>= 0.85</b> .                                                                        |    |                     |

#### APPENDIX

All Notations have their usual meaning and units

1. Reynolds Equation for Gas Pipelines:

$$Re = 0.5134 \left(\frac{P_b}{T_b}\right) \left(\frac{GQ}{\mu D}\right)$$
(SI)  
$$Re = 0.0004778 \left(\frac{P_b}{T_b}\right) \left(\frac{GQ}{\mu D}\right)$$
(USCS)

#### 2. Reynolds No. for Crude Oil Pipelines

a) R=92.24 Q/(v D)

Where: Q=Flow rate, bbl/day; D=Internal diameter, in.; v=Kinematic viscosity, cSt

#### b) R=353,678 Q/(vD)

Where: Q=Flow rate, m<sup>3</sup>/hr.; D=Internal diameter, mm; v= Kinematic viscosity, cSt

#### 3. Pressure Drop per unit length for oil pipelines (USCS)

$$Pm = 0.0605 fQ^2 (Sg/D^5)$$

Pm = pressure drop due to friction (psi/mile); Q= Liquid flow rate (bbl. per day); D = Pipe Internal- diameter, in.

#### 4. Colebrook White Equation

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{e}{3.7D} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$

### 5. Coversion Equations for SSU to Centistokes

Centistokes =0.226(SSU) - 
$$\frac{195}{SSU}$$
 32  $\leq$ SSU  $\leq$ 100

 $Centistokes = 0.220(SSU) - \frac{135}{SSU}$ 

# 6. Horsepower required to compress gas in compressor

 $SSU \succ 100$ 

7. 
$$HP = 0.0857 \left(\frac{\gamma}{\gamma - 1}\right) QT_1 \left(\frac{Z_1 + Z_2}{2}\right) \left(\frac{1}{\eta_a}\right) \left[\left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} - 1\right]$$

Adiabatic Efficiencey of Compressor

$$\eta_a = \left(\frac{T_1}{T_2 - T_1}\right) \left[ \left(\frac{z_1}{z_2}\right) \left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

# 8. BHP required to pump the liquid

$$BHP = \frac{QP}{2449E}$$

**Q**=flow rate (bbl./hr.);

**P**=Differentia pressure (psi)

9. Relation between Head and Pressure drop in liquid pipelines

$$H(feet) = \frac{2.31psi}{G}$$