Name:					
Enrolm	arrolment No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
	End Semester Examination, December 2018				
Programme Name:M. Tech. CFDSemCourse Name:Introduction to CFDTim		emester ime	: 03		
hrs. Course Nos. of Instruc	ye(s) : 03				
<u> </u>	SECTION A				
S. No.	SECTION A	Marks	CO		
Q 1	List the various physical boundary conditions encountered in a non-isothermal fluid flow.		C01		
Q 2	When the law of conservation of mass is applied to finite control volume Ω , moving with flow, the governing equation is given by $\frac{D}{Dt} \oiint \rho d\Omega = 0$ Convert this equation to divergence form, applicable to finite control volume fixed in space.		CO1		
Q 3	Sketch the various models of fluid flow used for derivation of governing equations. Write down the forms of equations that emanate from these models on applications conservation laws.		CO1		
Q 4	Illuminate the need of a body fitted coordinate system for the solution of governing flow equations using finite difference method.	4	CO3		
Q 5	Compare with illustrations, the explicit and implicit schemes for solution of partial differential equations.	4	CO2		
	SECTION B				
Q 6	Apply the law of conservation of momentum for an infinitesimally small	10	CO1		
	element of a viscous fluid moving in space and hence deduce the momentum equation for fluids in non- conservation form.				
	equation for finites in non- conservation form.				

	$\partial x^2 \partial y^2$ OR		
	The two-dimensional steady state heat conduction is governed by $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$		
	for at least 4 iterations.		
	plate. Take $AB=BC=CD=DA=4$ cm. Use pure Gauss-Seidel relaxation scheme		
	corners C and D. Find the steady state temperatures of at least 9 locations on the		
	edges DA and BC are also maintained at temperatures of 200 °K, except at the		
	maintained at temperatures of 200 °K and 100 °K respectively. The other two		
Q 10	Consider a two-dimensional square plate ABCD with edges AB and CD	20	CO5
	SECTION-C		
~ /	equations in 2-dimensions.	10	
Q 9	 Apply the Fourier stability analysis to this scheme, and determine the stability restrictions, if any. Discuss an explicit time marching algorithm for the solution of transient Euler 	10	CO2
	$u_{j}^{n+1} = u_{j}^{n} - c \frac{\Delta t}{\Delta x} \left(\frac{u_{j+1}^{n+1} - u_{j-1}^{n+1}}{2} \right)$		
	An explicit scheme for solving the first-order wave equation is given by:		
	OR		
	$\epsilon_m(x,t) = e^{at} e^{ik_m x}$		
	Assume the error to be of the form		
	dimensional heat conduction equation and hence establish the stability criterion.		
Q 8	Analyze the stability of explicit FTCS scheme for solution of transient, one-	10	CO4
	Classify this system of equations as hyperbolic or elliptic, based on the eigenvalue method.		
	$\frac{\partial u_3}{\partial t} + 4\frac{\partial u_1}{\partial x} - 17\frac{\partial u_2}{\partial x} + 8\frac{\partial u_3}{\partial x} = 0.$		
	$\frac{\partial u_2}{\partial t} + \frac{\partial u_3}{\partial x} = 0,$		
	$\frac{\partial u_1}{\partial t} + \frac{\partial u_2}{\partial x} = 0,$		

	Consider a 6 cm long steel, whose left and right ends are kept at fixed		
	temperatures of 0 °C and 100 °C respectively. The initial ($t = 0$ s) temperature at		
	other locations on the rod is 25 °C.		
	Predict the temperature at any five locations on the rod after 5 seconds ($t = 5$ s)		
	using an explicit Forward in Time and Central in Space (FTCS) finite difference		
	scheme. Hint: Take $\Delta x=0.01$ m.		
Q 11	Derive the modified equation that results from the first order forward in time	20	CO4
	and backward in space discretization of the first order wave equation.		
	$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$		
	Discuss the nature of dominating error for the above discretization and suggest		
	means to minimize them.		

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
End Semester Examination, December 2018Programme Name:M. Tech. CFDSemestCourse Name:Introduction to CFDTimeCourse Code:ASEG 7001Max. MNos. of page(s):03Instructions:Instructions::Assume any missing data appropriately.Instructions:			ter : I : 03 hrs. Marks: 100		
	· · · · · · · · · · · · · · · · · · ·	SECTION A			
S. No.				Marks	CO
Q1	Write down second order following derivatives. a. $\frac{\partial^2 u}{\partial y^2}$ b. $\frac{\partial u}{\partial y}$	accurate finite difference stencils for discretization of	of the	4	C01
Q 2	direction, the variation of	of air over a flat plate. At a given station in the the flow velocity, u , in the direction perpendicular tiven at discrete grid points equally spaced in y direction.	to the		
	located at $y = 0, 2.54, 5.08$ a numerical finite differen =1.7895 x 10 ⁻⁵ kg/m-s, usi wall τ_w three different ways	 u (m/s) 0 45.72 87.41 125.0 <i>u</i> listed above are discrete values at discrete grid p and 7.62 mm the same nature as would be obtained ce solution of the flow field. For viscosity coefficient flows the shear stress is an analy: first order one sided difference 	I from ent, μ	4	CO3
		ne second order one sided difference			
Q 3	Define numerical diffusion	and dispersion. Discuss the effect of numerical diff	fusion	4	CO4

	and dispersion on the solution of the one-dimensional scalar wave equation using the		
	explicit Forward in Time and Backward in Space (FTBS) scheme. Suggest methods		
	to alleviate the diffusive error.		
Q 4	Find the values of Mach number (M_{∞}) for which the system of equations given below		
	is hyperbolic.		
	$\left(1-M_{\infty}^{2}\right)\frac{\partial u'}{\partial x}+\frac{\partial v'}{\partial y}=0$	4	CO1
	$\frac{\partial u'}{\partial v} - \frac{\partial v'}{\partial x} = 0$		
Q 5	$\frac{\partial y}{\partial x}$ Elucidate the need of grid and equation transformation for the solution flow over		
	complex geometries using finite difference method.	4	CO3
	SECTION B		
Q 6	Consider the numerical solution of steady viscous flow over a flat plate using a finite		
	difference scheme. To calculate the details of this flow near the surface, very fine		
	mesh, stretched in transverse direction is required as shown in figure below.		
	Δy		
	(<i>i</i> , <i>j</i>)	10	CO3
		10	
	The solution requires an equispaced Cartesian grid in computational plane (ξ , η)		
	which can be obtained through following direct transformations		
	$\xi = x$		
	$\eta = \ln (1+y)$		
	If the continuity equation for above flow in physical plane (x, y) is $\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0$		
	, find the continuity equation that is required to be solved in the computational plane.		
Q 7	Consider the 2-dimensional transient heat conduction equation given below. The	10	CO2

	Crank-Nicolson discretization of the equation results in a pentadiagonal system of		
	equations. Demonstrate an algorithm to solve the system of equations iteratively.		
	$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$		
Q 8	Discuss the solution of Laplace equation in 2-dimensions using an explicit five point		
	Gauss-Seidel Scheme point iterative scheme. Suggest modifications that can accelerate this scheme.	10	CO2
Q 9	Derive a third order, one-sided finite difference discretization of first order derivative $\frac{\partial u}{\partial x}$.		
	OR	10	CO2
	Derive a fourth order accurate finite difference stencil for the mixed derivative $\frac{\partial^2 u}{\partial x^2}$		
	SECTION-C		
Q 10	Deduce the <i>modified equation</i> for the solution of the first order wave equation using		
	Lax Method given by		
	$\frac{u_{j}^{n+1} - (u_{j+1}^{n} + u_{j-1}^{n})/2}{\Delta t} + c \frac{u_{j+1}^{n} - u_{j-1}^{n}}{2 \Delta x} = 0$	20	CO4
	Hence, discuss the effect of the dominating error on the solution obtained.		
Q 11	Consider the Couette flow between two plates, characterized by the parabolic equation,	20	CO5
	$\frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial y^2} = 0, \nu = 0.000217 \mathrm{m}^2/\mathrm{s}$		
	with initial and boundary conditions given as:		
	Initial conditions at $t = 0$ $\begin{cases} u = u_0 = 40 \text{ m/s}, & y = 0 \\ u = 0, & 0 < y \le h \end{cases}$		
	Boundary conditions at $t > 0$ $\begin{cases} u = u_o = 40 \text{ m/s}, & y = 0 \\ u = 0, & y = h \end{cases}$		
	Evaluate the velocity at the midway location between the plates, at $t = 0.4$ seconds		
	using Crank-Nicolson Scheme. Take $h = 0.04$ m and use $\Delta y = 0.004$ m.		

OR

Consider square plate PQRS whose edges PQ, QR and SP are maintained at temperature of 400 °K whereas the edge RS is maintained at 200 °K. Find the steady state temperatures of at least 9 locations on the plate. Take PQ=QR=RS=SP=4 cm. Use a point iterative relaxation scheme for at least 4 iterations with an overrelaxation factor of 1.2. The two-dimensional steady state heat conduction is governed by $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$