Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

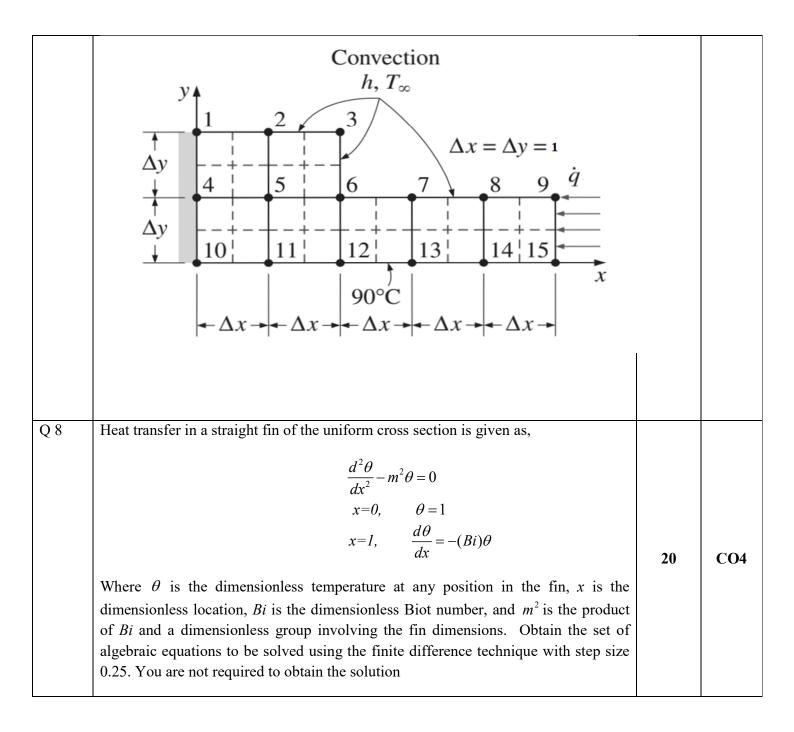
Program: B. Tech APE GAS Subject (Course): Numerical Methods in Chemical Engineering Course Code : MATH 311 No. of page/s: 3

Instruction(s):

(a) Assume the appropriate value of missing data if any.

(b) Mathematical and engineering terms have their usual meanings.

<u>SECTION A (12×5 =60 M)</u>


ANSWER ALL QUESTIONS (Q 5 has an internal choice)

S. No.												Marks	CO
Q 1	The "divide and average" method, an old-time method for approximating the square root of any positive number S, can be formulated as $x_{i+1} = \frac{1}{2} \left(x_i + \frac{S}{x_i} \right)$ Prove that this formula is based on the Newton-Raphson algorithm. Find the square root of 2 using this algorithm, with initial guess x = 1.							12	CO2				
Q2	A river is 80 i bank is given using (a) Simp x in meter D in meter	neter by tł	rs wid ne foll	e. The owing	e deptl g table	h D in 1 c. Calcu	meters ilate th	at a dis le cross				12	CO3
Q 3	Use the Gaus approximate s [0 0 0] ^T . Car	solut	ion of	the fo	ollowi iterat	ing sys ions.	tem of		ons with	· · · ·		12	CO1

Semester: V Max. Marks: 100 Duration: 3 Hrs.

Q 4	The molar volume of a fluid can be estimated using the van der Walls equation of state,					
	$(P + \frac{a}{v^2})(v - b) = RT$					
	Where, the thermodynamic terms have their usual meanings and <i>a</i> , <i>b</i> are van der Walls constants, which depends on the critical properties of the fluid as $a = \frac{27R^2T_c^2}{64P_c}$ and $b = \frac{RT_c}{8P_c}$.					
	Write a MATLAB code to estimate the molar volume of saturated liquid water and saturated water vapor at 1 atm pressure and 373 K using the Newton Raphson method (you are not required to obtain the solution). For water $T_c = 647.1K$ and $P_c = 220.55$ bar.					
Q 5	Find the value of y at $x = 1.1$ using the fourth order Runge-Kutta method,					
	$\frac{dy}{dx} = y^2 + xy$, $y(1) = 1$ and step size $h = 0.05$.					
	OR					
	Solve the first order ordinary differential equation from t=0 to t=1	12	CO4			
	$\frac{dy}{dt} + 1.5y - yt^3 = 0$; with condition y(0)=1,					
	using modified Euler's method with step size 0.5. You are required to perform only one iteration to correct the value of $y(0.5)$ and $y(1)$.					
	<u>SECTION B (20×2 =40 M)</u> ANSWER ANY TWO QUESTIONS					
Q 6	Suppose the following chemical reactions take place in a continuous stirred tank reactor (CSTR),					
	$k_1 \qquad k_3$					
	$A \rightleftharpoons B \rightleftharpoons C$	20	CO4			
	$k_2 \qquad k_4$					
	Where the rate constants are as follows, $k_1 = 1 \text{ min}^{-1}$, $k_2 = 0 \text{ min}^{-1}$, $k_3 = 2 \text{ min}^{-1}$,					

	$k_4 = 3 \text{ min}^{-1}$. The initial charge to the reactor is all A, so the initial conditions are (in		
	mol/L), $C_{AO} = 1, C_{BO} = C_{CO} = 0$.		
	An unsteady-state mass balance on each component leads to the following set of ODEs:		
	$\frac{dC_A}{dt} = -k_1C_A + k_2C_B$		
	$\frac{dC_A}{dt} = -k_1C_A + k_2C_B$ $\frac{dC_B}{dt} = k_1C_A - k_2C_B - k_3C_B + k_4C_C$ $\frac{dC_C}{dt} = k_3C_B - k_4C_C$		
	$\frac{dC_C}{dt} = k_3 C_B - k_4 C_C$		
	Use explicit Euler method to find the concentration of each component after 0.03 min with a step size of 0.01 min.		
Q 7	Let us consider an L- shaped structure (thermal conductivity, $k=5 W/m-K$) in		
	which heat is generated uniformly at a constant rate of $g = 5 \times 10^6 W / m^3$ as shown		
	in the figure below. The steady state heat conduction takes place in the structure as		
	per the equation $\frac{\partial^2 T}{dx^2} + \frac{\partial^2 T}{dy^2} + \frac{g}{k} = 0$. The left surface is insulated and the bottom		
	surface is at a uniform temperature of 90 °C. The entire top surface is subjected to	20	CO5
	convection to the ambient air at 25 °C with a convective heat transfer coefficient of		
	$h = 75 \text{ W/m}^{2} \circ \text{C}$. The right surface is subjected to a uniform heat flux of 4500 W/m ² .		
	Discretize the equation using step size $\Delta x = \Delta y = 1$ cm. Formulate the problem into		
	the solvable form of a system of linear equation $Ax = b$. You are not required to		
	obtain the solution.		

