Name:
Enrolment No:

Ú UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018
Program: B. Tech APE GAS
Subject (Course): Numerical Methods in Chemical Engineering
Course Code : MATH 311
Semester: V

Max. Marks: 100
Duration: 3 Hrs.

No. of page/s: 3

Instruction(s):

(a) Assume the appropriate value of missing data if any.
(b) Mathematical and engineering terms have their usual meanings.

SECTION A $(\mathbf{1 2} \times 5=60 \mathrm{M})$

ANSWER ALL QUESTIONS (Q 5 has an internal choice)

Q 4	The molar volume of a fluid can be estimated using the van der Walls equation of state, $\left(P+\frac{a}{v^{2}}\right)(v-b)=R T$ Where, the thermodynamic terms have their usual meanings and a, b are van der Walls constants, which depends on the critical properties of the fluid as, $a=\frac{27 R^{2} T_{c}^{2}}{64 P_{c}}$ and $b=\frac{R T_{c}}{8 P_{c}}$. Write a MATLAB code to estimate the molar volume of saturated liquid water and saturated water vapor at 1 atm pressure and 373 K using the Newton Raphson method (you are not required to obtain the solution). For water $T_{c}=647.1 \mathrm{~K}$ and $P_{c}=220.55$ bar.	12	CO6
Q 5	Find the value of y at $\mathrm{x}=1.1$ using the fourth order Runge- Kutta method, $\frac{d y}{d x}=y^{2}+x y, y(1)=1 \text { and step size } \mathrm{h}=0.05 .$ OR Solve the first order ordinary differential equation from $t=0$ to $t=1$ $\frac{d y}{d t}+1.5 y-y t^{3}=0 ; \text { with condition } \mathrm{y}(0)=1,$ using modified Euler's method with step size 0.5 . You are required to perform only one iteration to correct the value of $y(0.5)$ and $y(1)$.	12	CO4
	SECTION B $(20 \times 2=40 \mathrm{M})$ ANSWER ANY TWO QUESTIONS		
Q 6	Suppose the following chemical reactions take place in a continuous stirred tank reactor (CSTR), $A \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} B \stackrel{k_{3}}{\rightleftharpoons} C$ Where the rate constants are as follows, $k_{1}=1 \mathrm{~min}^{-1}, k_{2}=0 \mathrm{~min}^{-1}, k_{3}=2 \mathrm{~min}^{-1}$,	20	CO 4

	$k_{4}=3 \mathrm{~min}^{-1}$. The initial charge to the reactor is all A, so the initial conditions are (in $\mathrm{mol} / \mathrm{L}), C_{A O}=1, C_{B O}=C_{C O}=0$. An unsteady-state mass balance on each component leads to the following set of ODEs: $\begin{aligned} \frac{d C_{A}}{d t} & =-k_{1} C_{A}+k_{2} C_{B} \\ \frac{d C_{B}}{d t} & =k_{1} C_{A}-k_{2} C_{B}-k_{3} C_{B}+k_{4} C_{C} \\ \frac{d C_{C}}{d t} & =k_{3} C_{B}-k_{4} C_{C} \end{aligned}$ Use explicit Euler method to find the concentration of each component after 0.03 min with a step size of 0.01 min .		
Q 7	Let us consider an L- shaped structure (thermal conductivity, $k=5 \mathrm{~W} / m-K$) in which heat is generated uniformly at a constant rate of $g=5 \times 10^{6} \mathrm{~W} / \mathrm{m}^{3}$ as shown in the figure below. The steady state heat conduction takes place in the structure as per the equation $\frac{\partial^{2} T}{d x^{2}}+\frac{\partial^{2} T}{d y^{2}}+\frac{g}{k}=0$. The left surface is insulated and the bottom surface is at a uniform temperature of $90^{\circ} \mathrm{C}$. The entire top surface is subjected to convection to the ambient air at $25^{\circ} \mathrm{C}$ with a convective heat transfer coefficient of $h=75 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$. The right surface is subjected to a uniform heat flux of $4500 \mathrm{~W} / \mathrm{m}^{2}$. Discretize the equation using step size $\Delta x=\Delta y=1 \mathrm{~cm}$. Formulate the problem into the solvable form of a system of linear equation $\mathrm{Ax}=\mathrm{b}$. You are not required to obtain the solution.	20	$\mathrm{CO5}$

Q 8
Heat transfer in a straight fin of the uniform cross section is given as,

Where θ is the dimensionless temperature at any position in the fin, x is the
dimensionless location, $B i$ is the dimensionless Biot number, and m^{2} is the product
of $B i$ and a dimensionless group involving the fin dimensions. Obtain the set of
algebraic equations to be solved using the finite difference technique with step size
$0.25 . ~ Y o u ~ a r e ~ n o t ~ r e q u i r e d ~ t o ~ o b t a i n ~ t h e ~ s o l u t i o n ~$

